31,422 research outputs found

    Detection of Cyber-Physical Faults and Intrusions from Physical Correlations

    Full text link
    Cyber-physical systems are critical infrastructures that are crucial both to the reliable delivery of resources such as energy, and to the stable functioning of automatic and control architectures. These systems are composed of interdependent physical, control and communications networks described by disparate mathematical models creating scientific challenges that go well beyond the modeling and analysis of the individual networks. A key challenge in cyber-physical defense is a fast online detection and localization of faults and intrusions without prior knowledge of the failure type. We describe a set of techniques for the efficient identification of faults from correlations in physical signals, assuming only a minimal amount of available system information. The performance of our detection method is illustrated on data collected from a large building automation system.Comment: 10 pages, 9 figure

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Anomaly Detection: Review and preliminary Entropy method tests

    Full text link
    Anomalies are strange data points; they usually represent an unusual occurrence. Anomaly detection is presented from the perspective of Wireless sensor networks. Different approaches have been taken in the past, as we will see, not only to identify outliers, but also to establish the statistical properties of the different methods. The usual goal is to show that the approach is asymptotically efficient and that the metric used is unbiased or maybe biased. This project is based on a work done by [1]. The approach is based on the principle that the entropy of the data is increased when an anomalous data point is measured. The entropy of the data set is thus to be estimated. In this report however, preliminary efforts at confirming the results of [1] is presented. To estimate the entropy of the dataset, since no parametric form is assumed, the probability density function of the data set is first estimated using data split method. This estimated pdf value is then plugged-in to the entropy estimation formula to estimate the entropy of the dataset. The data (test signal) used in this report is Gaussian distributed with zero mean and variance 4. Results of pdf estimation using the k-nearest neighbour method using the entire dataset, and a data-split method are presented and compared based on how well they approximate the probability density function of a Gaussian with similar mean and variance. The number of nearest neighbours chosen for the purpose of this report is 8. This is arbitrary, but is reasonable since the number of anomalies introduced is expected to be less than this upon data-split. The data-split method is preferred and rightly so

    Effective Connectivity-Based Neural Decoding: A Causal Interaction-Driven Approach

    Full text link
    We propose a geometric model-free causality measurebased on multivariate delay embedding that can efficiently detect linear and nonlinear causal interactions between time series with no prior information. We then exploit the proposed causal interaction measure in real MEG data analysis. The results are used to construct effective connectivity maps of brain activity to decode different categories of visual stimuli. Moreover, we discovered that the MEG-based effective connectivity maps as a response to structured images exhibit more geometric patterns, as disclosed by analyzing the evolution of toplogical structures of the underlying networks using persistent homology. Extensive simulation and experimental result have been carried out to substantiate the capabilities of the proposed approach.Comment: 16 pages, 13 figures, 2 table

    Application of Compressive Sensing Techniques in Distributed Sensor Networks: A Survey

    Full text link
    In this survey paper, our goal is to discuss recent advances of compressive sensing (CS) based solutions in wireless sensor networks (WSNs) including the main ongoing/recent research efforts, challenges and research trends in this area. In WSNs, CS based techniques are well motivated by not only the sparsity prior observed in different forms but also by the requirement of efficient in-network processing in terms of transmit power and communication bandwidth even with nonsparse signals. In order to apply CS in a variety of WSN applications efficiently, there are several factors to be considered beyond the standard CS framework. We start the discussion with a brief introduction to the theory of CS and then describe the motivational factors behind the potential use of CS in WSN applications. Then, we identify three main areas along which the standard CS framework is extended so that CS can be efficiently applied to solve a variety of problems specific to WSNs. In particular, we emphasize on the significance of extending the CS framework to (i). take communication constraints into account while designing projection matrices and reconstruction algorithms for signal reconstruction in centralized as well in decentralized settings, (ii) solve a variety of inference problems such as detection, classification and parameter estimation, with compressed data without signal reconstruction and (iii) take practical communication aspects such as measurement quantization, physical layer secrecy constraints, and imperfect channel conditions into account. Finally, open research issues and challenges are discussed in order to provide perspectives for future research directions

    Life detection strategy based on infrared vision and ultra-wideband radar data fusion

    Full text link
    The life detection method based on a single type of information source cannot meet the requirement of post-earthquake rescue due to its limitations in different scenes and bad robustness in life detection. This paper proposes a method based on deep neural network for multi-sensor decision-level fusion which concludes Convolutional Neural Network and Long Short Term Memory neural network (CNN+LSTM). Firstly, we calculate the value of the life detection probability of each sensor with various methods in the same scene simultaneously, which will be gathered to make samples for inputs of the deep neural network. Then we use Convolutional Neural Network (CNN) to extract the distribution characteristics of the spatial domain from inputs which is the two-channel combination of the probability values and the smoothing probability values of each life detection sensor respectively. Furthermore, the sequence time relationship of the outputs from the last layers will be analyzed with Long Short Term Memory (LSTM) layers, then we concatenate the results from three branches of LSTM layers. Finally, two sets of LSTM neural networks that is different from the previous layers are used to integrate the three branches of the features, and the results of the two classifications are output using the fully connected network with Binary Cross Entropy (BEC) loss function. Therefore, the classification results of the life detection can be concluded accurately with the proposed algorithm.Comment: 6 pages, 7 figures, conferenc

    Sensor Configuration and Activation for Field Detection in Large Sensor Arrays

    Full text link
    The problems of sensor configuration and activation for the detection of correlated random fields using large sensor arrays are considered. Using results that characterize the large-array performance of sensor networks in this application, the detection capabilities of different sensor configurations are analyzed and compared. The dependence of the optimal choice of configuration on parameters such as sensor signal-to-noise ratio (SNR), field correlation, etc., is examined, yielding insights into the most effective choices for sensor selection and activation in various operating regimes.Comment: 7 pages with 11 figures; also to appear in the Fourth International Conference on Information Processing in Sensor Network

    A Journey from Improper Gaussian Signaling to Asymmetric Signaling

    Full text link
    The deviation of continuous and discrete complex random variables from the traditional proper and symmetric assumption to a generalized improper and asymmetric characterization (accounting correlation between a random entity and its complex conjugate), respectively, introduces new design freedom and various potential merits. As such, the theory of impropriety has vast applications in medicine, geology, acoustics, optics, image and pattern recognition, computer vision, and other numerous research fields with our main focus on the communication systems. The journey begins from the design of improper Gaussian signaling in the interference-limited communications and leads to a more elaborate and practically feasible asymmetric discrete modulation design. Such asymmetric shaping bridges the gap between theoretically and practically achievable limits with sophisticated transceiver and detection schemes in both coded/uncoded wireless/optical communication systems. Interestingly, introducing asymmetry and adjusting the transmission parameters according to some design criterion render optimal performance without affecting the bandwidth or power requirements of the systems. This dual-flavored article initially presents the tutorial base content covering the interplay of reality/complexity, propriety/impropriety and circularity/noncircularity and then surveys majority of the contributions in this enormous journey.Comment: IEEE COMST (Early Access

    Online Multivariate Anomaly Detection and Localization for High-dimensional Settings

    Full text link
    This paper considers the real-time detection of anomalies in high-dimensional systems. The goal is to detect anomalies quickly and accurately so that the appropriate countermeasures could be taken in time, before the system possibly gets harmed. We propose a sequential and multivariate anomaly detection method that scales well to high-dimensional datasets. The proposed method follows a nonparametric, i.e., data-driven, and semi-supervised approach, i.e., trains only on nominal data. Thus, it is applicable to a wide range of applications and data types. Thanks to its multivariate nature, it can quickly and accurately detect challenging anomalies, such as changes in the correlation structure and stealth low-rate cyberattacks. Its asymptotic optimality and computational complexity are comprehensively analyzed. In conjunction with the detection method, an effective technique for localizing the anomalous data dimensions is also proposed. We further extend the proposed detection and localization methods to a supervised setup where an additional anomaly dataset is available, and combine the proposed semi-supervised and supervised algorithms to obtain an online learning algorithm under the semi-supervised framework. The practical use of proposed algorithms are demonstrated in DDoS attack mitigation, and their performances are evaluated using a real IoT-botnet dataset and simulations.Comment: 16 pages, LaTeX; references adde

    POP-CNN: Predicting Odor's Pleasantness with Convolutional Neural Network

    Full text link
    Predicting odor's pleasantness simplifies the evaluation of odors and has the potential to be applied in perfumes and environmental monitoring industry. Classical algorithms for predicting odor's pleasantness generally use a manual feature extractor and an independent classifier. Manual designing a good feature extractor depend on expert knowledge and experience is the key to the accuracy of the algorithms. In order to circumvent this difficulty, we proposed a model for predicting odor's pleasantness by using convolutional neural network. In our model, the convolutional neural layers replace manual feature extractor and show better performance. The experiments show that the correlation between our model and human is over 90% on pleasantness rating. And our model has 99.9% accuracy in distinguishing between absolutely pleasant or unpleasant odors
    • …
    corecore