484 research outputs found

    Function-based Intersubject Alignment of Human Cortical Anatomy

    Get PDF
    Making conclusions about the functional neuroanatomical organization of the human brain requires methods for relating the functional anatomy of an individual's brain to population variability. We have developed a method for aligning the functional neuroanatomy of individual brains based on the patterns of neural activity that are elicited by viewing a movie. Instead of basing alignment on functionally defined areas, whose location is defined as the center of mass or the local maximum response, the alignment is based on patterns of response as they are distributed spatially both within and across cortical areas. The method is implemented in the two-dimensional manifold of an inflated, spherical cortical surface. The method, although developed using movie data, generalizes successfully to data obtained with another cognitive activation paradigmā€”viewing static images of objects and facesā€”and improves group statistics in that experiment as measured by a standard general linear model (GLM) analysis

    Visualization-Based Mapping of Language Function in the Brain

    Get PDF
    Cortical language maps, obtained through intraoperative electrical stimulation studies, provide a rich source of information for research on language organization. Previous studies have shown interesting correlations between the distribution of essential language sites and such behavioral indicators as verbal IQ and have provided suggestive evidence for regarding human language cortex as an organization of multiple distributed systems. Noninvasive studies using ECoG, PET, and functional MR lend support to this model; however, there as yet are no studies that integrate these two forms of information. In this paper we describe a method for mapping the stimulation data onto a 3-D MRI-based neuroanatomic model of the individual patient. The mapping is done by comparing an intraoperative photograph of the exposed cortical surface with a computer-based MR visualization of the surface, interactively indicating corresponding stimulation sites, and recording 3-D MR machine coordinates of the indicated sites. Repeatability studies were performed to validate the accuracy of the mapping technique. Six observersā€”a neurosurgeon, a radiologist, and four computer scientists, independently mapped 218 stimulation sites from 12 patients. The mean distance of a mapping from the mean location of each site was 2.07 mm, with a standard deviation of 1.5 mm, or within 5.07 mm with 95% confidence. Since the surgical sites are accurate within approximately 1 cm, these results show that the visualization-based approach is accurate within the limits of the stimulation maps. When incorporated within the kind of information system envisioned by the Human Brain Project, this anatomically based method will not only provide a key link between noninvasive and invasive approaches to understanding language organization, but will also provide the basis for studying the relationship between language function and anatomical variability

    Gender and age effects in structural brain asymmetry as measured by MRI texture analysis

    Get PDF
    Effects of gender and age on structural brain asymmetry were studied by 3D texture analysis in 380 adults. Asymmetry is detected by comparing the complex 3D gray-scale image patterns in the left and right cerebral hemispheres as revealed by anatomical T1-weighted MRI datasets. The Talairach and Tournoux parcellation system was applied to study the asymmetry on five levels: the whole cerebrum, nine coronal sections, 12 axial sections, boxes resulting from both coronal and axial subdivisions, and by a sliding spherical window of 9 mm diameter. The analysis revealed that the brain asymmetry increases in the anterior-posterior direction starting from the central region onward. Male brains were found to be more asymmetric than female. This gender-related effect is noticeable in all brain areas but is most significant in the superior temporal gyrus, Heschl's gyrus, the adjacent white matter regions in the temporal stem and the knee of the optic radiation, the thalamus, and the posterior cingulate. The brain asymmetry increases significantly with age in the inferior frontal gyrus, anterior insula, anterior cingulate, parahippocampal gyrus, retrosplenial cortex, coronal radiata, and knee region of the internal capsule. Asymmetry decreases with age in the optic radiation, precentral gyrus, and angular gyrus. The texture-based method reported here is based on extended multisort cooccurrence matrices that employ intensity, gradient, and anisotropy features in a uniform way. It is sensitive, simple to reproduce, robust, and unbiased in the sense that segmentation of brain compartments and spatial transformations are not necessary. Thus, it should be considered as another tool for digital morphometry in neuroscience

    Brain imaging in a patient with hemimicropsia

    Get PDF
    Hemimicropsia is an isolated misperception of the size of objects in one hemifield (objects appear smaller) which is, as a phenomenon of central origin, very infrequently reported in literature. We present a case of hemimicropsia as a selective deficit of size and distance perception in the left hemifield without hemianopsia caused by a cavernous angioma with hemorrhage in the right occipitotemporal area. The symptom occurred only intermittently and was considered the consequence of a local irritation by the hemorrhage. Imaging data including a volume-rendering MR data set of the patientā€™s brain were transformed to the 3-D stereotactic grid system by Talairach and warped to a novel digital 3-D brain atlas. Imaging analysis included functional MRI (fMRI) to analyse the patientā€™s visual cortex areas (mainly V5) in relation to the localization of the hemangioma to establish physiological landmarks with respect to visual stimulation. The lesion was localized in the peripheral visual association cortex, Brodmann area (BA) 19, adjacent to BA 37, both of which are part of the occipitotemporal visual pathway. Additional psychophysical measurements revealed an elevated threshold for perceiving coherent motion. which we relate to a partial loss of function in V5, a region adjacent to the cavernoma. In our study, we localized for the first time a cerebral lesion causing micropsia by digital mapping in Talairach space using a 3-D brain atlas and topologically related it to fMRI data for visual motion. The localization of the brain lesion affecting BA 19 and the occipitotemporal visual pathway is discussed with respect to experimental and case report findings about the neural basis of object size perception

    Design and Validation of a MR-compatible Pneumatic Manipulandum

    Get PDF
    The combination of functional MR imaging and novel robotic tools may provide unique opportunities to probe the neural systems underlying motor control and learning. Here, we describe the design and validation of a MR-compatible, 1 degree-of-freedom pneumatic manipulandum along with experiments demonstrating its safety and efficacy. We first validated the robot\u27s ability to apply computer-controlled loads about the wrist, demonstrating that it possesses sufficient bandwidth to simulate torsional spring-like loads during point-to-point flexion movements. Next, we verified the MR-compatibility of the device by imaging a head phantom during robot operation. We observed no systematic differences in two measures of MRI signal quality (signal/noise and field homogeneity) when the robot was introduced into the scanner environment. Likewise, measurements of joint angle and actuator pressure were not adversely affected by scanning. Finally, we verified device efficacy by scanning 20 healthy human subjects performing rapid wrist flexions against a wide range of spring-like loads. We observed a linear relationship between joint torque at peak movement extent and perturbation magnitude, thus demonstrating the robot\u27s ability to simulate spring-like loads in situ. fMRI revealed task-related activation in regions known to contribute to the control of movement including the left primary sensorimotor cortex and right cerebellum

    Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental condition that can be debilitating to social functioning. Previous functional Magnetic Resonance Imaging (fMRI) classification studies have included only small subject sample sizes (n 50) and have seen high classification accuracy. The recent release of the Autism Brain Imaging Data Exchange (ABIDE) provides fMRI data for over 1,100 subjects. In our research, we derive a subject\u27s functional network connectivity (FNC) from their fMRI data and develop a regularized logistic classifier to determine whether a subject has autism. We obtained up to 65% classification accuracy, similar to other studies using the ABIDE dataset, suggesting that generalizing a classifier over a large number of subjects is much more difficult than smaller studies. The connectivity among several brain regions of ASD subjects were highlighted in the model as abnormal compared to the control subjects which potentially warrants future investigations about how these regions affect ASD. Although the classification accuracy was lower than what could be considered as clinically applicable, this research contributes to the continuing development of an automated classifier for diagnosing autism

    Fronto-Parietal Gray Matter Volume Loss Is Associated with Decreased Working Memory Performance in Adolescents with a First Episode of Psychosis.

    Full text link
    Cognitive maturation during adolescence is modulated by brain maturation. However, it is unknown how these processes intertwine in early onset psychosis (EOP). Studies examining longitudinal brain changes and cognitive performance in psychosis lend support for an altered development of high-order cognitive functions, which parallels progressive gray matter (GM) loss over time, particularly in fronto-parietal brain regions. We aimed to assess this relationship in a subsample of 33 adolescents with first-episode EOP and 47 matched controls over 2 years. Backwards stepwise regression analyses were conducted to determine the association and predictive value of longitudinal brain changes over cognitive performance within each group. Fronto-parietal GM volume loss was positively associated with decreased working memory in adolescents with psychosis (frontal left (B = 0.096, p = 0.008); right (B = 0.089, p = 0.015); parietal left (B = 0.119, p = 0.007), right (B = 0.125, p = 0.015)) as a function of age. A particular decrease in frontal left GM volume best predicted a significant amount (22.28%) of the variance of decreased working memory performance over time, accounting for variance in age (14.9%). No such association was found in controls. Our results suggest that during adolescence, EOP individuals seem to follow an abnormal neurodevelopmental trajectory, in which fronto-parietal GM volume reduction is associated with the differential age-related working memory dysfunction in this group
    • ā€¦
    corecore