4,867 research outputs found

    Vote-boosting ensembles

    Full text link
    Vote-boosting is a sequential ensemble learning method in which the individual classifiers are built on different weighted versions of the training data. To build a new classifier, the weight of each training instance is determined in terms of the degree of disagreement among the current ensemble predictions for that instance. For low class-label noise levels, especially when simple base learners are used, emphasis should be made on instances for which the disagreement rate is high. When more flexible classifiers are used and as the noise level increases, the emphasis on these uncertain instances should be reduced. In fact, at sufficiently high levels of class-label noise, the focus should be on instances on which the ensemble classifiers agree. The optimal type of emphasis can be automatically determined using cross-validation. An extensive empirical analysis using the beta distribution as emphasis function illustrates that vote-boosting is an effective method to generate ensembles that are both accurate and robust

    Boosting Image Forgery Detection using Resampling Features and Copy-move analysis

    Full text link
    Realistic image forgeries involve a combination of splicing, resampling, cloning, region removal and other methods. While resampling detection algorithms are effective in detecting splicing and resampling, copy-move detection algorithms excel in detecting cloning and region removal. In this paper, we combine these complementary approaches in a way that boosts the overall accuracy of image manipulation detection. We use the copy-move detection method as a pre-filtering step and pass those images that are classified as untampered to a deep learning based resampling detection framework. Experimental results on various datasets including the 2017 NIST Nimble Challenge Evaluation dataset comprising nearly 10,000 pristine and tampered images shows that there is a consistent increase of 8%-10% in detection rates, when copy-move algorithm is combined with different resampling detection algorithms

    Futility Analysis in the Cross-Validation of Machine Learning Models

    Full text link
    Many machine learning models have important structural tuning parameters that cannot be directly estimated from the data. The common tactic for setting these parameters is to use resampling methods, such as cross--validation or the bootstrap, to evaluate a candidate set of values and choose the best based on some pre--defined criterion. Unfortunately, this process can be time consuming. However, the model tuning process can be streamlined by adaptively resampling candidate values so that settings that are clearly sub-optimal can be discarded. The notion of futility analysis is introduced in this context. An example is shown that illustrates how adaptive resampling can be used to reduce training time. Simulation studies are used to understand how the potential speed--up is affected by parallel processing techniques.Comment: 22 pages, 5 figure
    • …
    corecore