34,418 research outputs found

    Seeing the Forest for the Trees: Using the Gene Ontology to Restructure Hierarchical Clustering

    Get PDF
    Motivation: There is a growing interest in improving the cluster analysis of expression data by incorporating into it prior knowledge, such as the Gene Ontology (GO) annotations of genes, in order to improve the biological relevance of the clusters that are subjected to subsequent scrutiny. The structure of the GO is another source of background knowledge that can be exploited through the use of semantic similarity. Results: We propose here a novel algorithm that integrates semantic similarities (derived from the ontology structure) into the procedure of deriving clusters from the dendrogram constructed during expression-based hierarchical clustering. Our approach can handle the multiple annotations, from different levels of the GO hierarchy, which most genes have. Moreover, it treats annotated and unannotated genes in a uniform manner. Consequently, the clusters obtained by our algorithm are characterized by significantly enriched annotations. In both cross-validation tests and when using an external index such as proteinā€“protein interactions, our algorithm performs better than previous approaches. When applied to human cancer expression data, our algorithm identifies, among others, clusters of genes related to immune response and glucose metabolism. These clusters are also supported by proteinā€“protein interaction data. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.Lynne and William Frankel Center for Computer Science; Paul Ivanier center for robotics research and production; National Institutes of Health (R01 HG003367-01A1

    Identification of disease-causing genes using microarray data mining and gene ontology

    Get PDF
    Background: One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes. Methods: We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results. Results: The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth. Conclusions: The proposed method addresses the weakness of conventional methods by adding a redundancy reduction stage and utilizing Gene Ontology information. It predicts marker genes for colon, DLBCL and prostate cancer with a high accuracy. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help in the search for a cure for cancers

    Pairwise gene GO-based measures for biclustering of high-dimensional expression data

    Get PDF
    Background: Biclustering algorithms search for groups of genes that share the same behavior under a subset of samples in gene expression data. Nowadays, the biological knowledge available in public repositories can be used to drive these algorithms to find biclusters composed of groups of genes functionally coherent. On the other hand, a distance among genes can be defined according to their information stored in Gene Ontology (GO). Gene pairwise GO semantic similarity measures report a value for each pair of genes which establishes their functional similarity. A scatter search-based algorithm that optimizes a merit function that integrates GO information is studied in this paper. This merit function uses a term that addresses the information through a GO measure. Results: The effect of two possible different gene pairwise GO measures on the performance of the algorithm is analyzed. Firstly, three well known yeast datasets with approximately one thousand of genes are studied. Secondly, a group of human datasets related to clinical data of cancer is also explored by the algorithm. Most of these data are high-dimensional datasets composed of a huge number of genes. The resultant biclusters reveal groups of genes linked by a same functionality when the search procedure is driven by one of the proposed GO measures. Furthermore, a qualitative biological study of a group of biclusters show their relevance from a cancer disease perspective. Conclusions: It can be concluded that the integration of biological information improves the performance of the biclustering process. The two different GO measures studied show an improvement in the results obtained for the yeast dataset. However, if datasets are composed of a huge number of genes, only one of them really improves the algorithm performance. This second case constitutes a clear option to explore interesting datasets from a clinical point of view.Ministerio de EconomĆ­a y Competitividad TIN2014-55894-C2-

    TROM: A Testing-based Method for Finding Transcriptomic Similarity of Biological Samples

    Full text link
    Comparative transcriptomics has gained increasing popularity in genomic research thanks to the development of high-throughput technologies including microarray and next-generation RNA sequencing that have generated numerous transcriptomic data. An important question is to understand the conservation and differentiation of biological processes in different species. We propose a testing-based method TROM (Transcriptome Overlap Measure) for comparing transcriptomes within or between different species, and provide a different perspective to interpret transcriptomic similarity in contrast to traditional correlation analyses. Specifically, the TROM method focuses on identifying associated genes that capture molecular characteristics of biological samples, and subsequently comparing the biological samples by testing the overlap of their associated genes. We use simulation and real data studies to demonstrate that TROM is more powerful in identifying similar transcriptomes and more robust to stochastic gene expression noise than Pearson and Spearman correlations. We apply TROM to compare the developmental stages of six Drosophila species, C. elegans, S. purpuratus, D. rerio and mouse liver, and find interesting correspondence patterns that imply conserved gene expression programs in the development of these species. The TROM method is available as an R package on CRAN (http://cran.r-project.org/) with manuals and source codes available at http://www.stat.ucla.edu/ jingyi.li/software-and-data/trom.html

    Integration of molecular network data reconstructs Gene Ontology.

    Get PDF
    Motivation: Recently, a shift was made from using Gene Ontology (GO) to evaluate molecular network data to using these data to construct and evaluate GO. Dutkowski et al. provide the first evidence that a large part of GO can be reconstructed solely from topologies of molecular networks. Motivated by this work, we develop a novel data integration framework that integrates multiple types of molecular network data to reconstruct and update GO. We ask how much of GO can be recovered by integrating various molecular interaction data. Results: We introduce a computational framework for integration of various biological networks using penalized non-negative matrix tri-factorization (PNMTF). It takes all network data in a matrix form and performs simultaneous clustering of genes and GO terms, inducing new relations between genes and GO terms (annotations) and between GO terms themselves. To improve the accuracy of our predicted relations, we extend the integration methodology to include additional topological information represented as the similarity in wiring around non-interacting genes. Surprisingly, by integrating topologies of bakersā€™ yeasts proteinā€“protein interaction, genetic interaction (GI) and co-expression networks, our method reports as related 96% of GO terms that are directly related in GO. The inclusion of the wiring similarity of non-interacting genes contributes 6% to this large GO term association capture. Furthermore, we use our method to infer new relationships between GO terms solely from the topologies of these networks and validate 44% of our predictions in the literature. In addition, our integration method reproduces 48% of cellular component, 41% of molecular function and 41% of biological process GO terms, outperforming the previous method in the former two domains of GO. Finally, we predict new GO annotations of yeast genes and validate our predictions through GIs profiling. Availability and implementation: Supplementary Tables of new GO term associations and predicted gene annotations are available at http://bio-nets.doc.ic.ac.uk/GO-Reconstruction/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Predicting protein function with hierarchical phylogenetic profiles: The Gene3D phylo-tuner method applied to eukaryotic Genomes

    Get PDF
    "Phylogenetic profiling'' is based on the hypothesis that during evolution functionally or physically interacting genes are likely to be inherited or eliminated in a codependent manner. Creating presence-absence profiles of orthologous genes is now a common and powerful way of identifying functionally associated genes. In this approach, correctly determining orthology, as a means of identifying functional equivalence between two genes, is a critical and nontrivial step and largely explains why previous work in this area has mainly focused on using presence-absence profiles in prokaryotic species. Here, we demonstrate that eukaryotic genomes have a high proportion of multigene families whose phylogenetic profile distributions are poor in presence-absence information content. This feature makes them prone to orthology mis-assignment and unsuited to standard profile-based prediction methods. Using CATH structural domain assignments from the Gene3D database for 13 complete eukaryotic genomes, we have developed a novel modification of the phylogenetic profiling method that uses genome copy number of each domain superfamily to predict functional relationships. In our approach, superfamilies are subclustered at ten levels of sequence identity from 30% to 100% - and phylogenetic profiles built at each level. All the profiles are compared using normalised Euclidean distances to identify those with correlated changes in their domain copy number. We demonstrate that two protein families will "auto-tune'' with strong co-evolutionary signals when their profiles are compared at the similarity levels that capture their functional relationship. Our method finds functional relationships that are not detectable by the conventional presence - absence profile comparisons, and it does not require a priori any fixed criteria to define orthologous genes
    • ā€¦
    corecore