1,132 research outputs found

    A semantic methodology for (un)structured digital evidences analysis

    Get PDF
    Nowadays, more than ever, digital forensics activities are involved in any criminal, civil or military investigation and represent a fundamental tool to support cyber-security. Investigators use a variety of techniques and proprietary software forensic applications to examine the copy of digital devices, searching hidden, deleted, encrypted, or damaged files or folders. Any evidence found is carefully analysed and documented in a "finding report" in preparation for legal proceedings that involve discovery, depositions, or actual litigation. The aim is to discover and analyse patterns of fraudulent activities. In this work, a new methodology is proposed to support investigators during the analysis process, correlating evidences found through different forensic tools. The methodology was implemented through a system able to add semantic assertion to data generated by forensics tools during extraction processes. These assertions enable more effective access to relevant information and enhanced retrieval and reasoning capabilities

    The \uabQuality of Information\ubb Challenges in IoT Forensics: An Introduction

    Get PDF
    IoT technologies pose serious challenges to digital forensics. The acquisition of digital evidence is hindered by the number and extreme variety of IoT items, often lacking of physical interfaces, connected in unprotected networks, feeding data to uncontrolled cloud services. In this paper we introduce the main issues of \uabinformation quality\ubb in this field. After a short introduction, we provide an overview on digital forensics approach to preserve the \uabchain of custody\ubb, then we detect relevant IoT features in order to analyse main concerns in digital forensics. At the end, we propose a formula for benchmarking forensics trustworthiness (Information Quality Assessment)

    A Unified Forensics Analysis Approach to Digital Investigation

    Get PDF
    Digital forensics is now essential in addressing cybercrime and cyber-enabled crime but potentially it can have a role in almost every other type of crime. Given technology's continuous development and prevalence, the widespread adoption of technologies among society and the subsequent digital footprints that exist, the analysis of these technologies can help support investigations. The abundance of interconnected technologies and telecommunication platforms has significantly changed the nature of digital evidence. Subsequently, the nature and characteristics of digital forensic cases involve an enormous volume of data heterogeneity, scattered across multiple evidence sources, technologies, applications, and services. It is indisputable that the outspread and connections between existing technologies have raised the need to integrate, harmonise, unify and correlate evidence across data sources in an automated fashion. Unfortunately, the current state of the art in digital forensics leads to siloed approaches focussed upon specific technologies or support of a particular part of digital investigation. Due to this shortcoming, the digital investigator examines each data source independently, trawls through interconnected data across various sources, and often has to conduct data correlation manually, thus restricting the digital investigator’s ability to answer high-level questions in a timely manner with a low cognitive load. Therefore, this research paper investigates the limitations of the current state of the art in the digital forensics discipline and categorises common investigation crimes with the necessary corresponding digital analyses to define the characteristics of the next-generation approach. Based on these observations, it discusses the future capabilities of the next-generation unified forensics analysis tool (U-FAT), with a workflow example that illustrates data unification, correlation and visualisation processes within the proposed method.</jats:p

    Assessing Information Quality in IoT Forensics: Theoretical Framework and Model Implementation

    Get PDF
    IoT technologies pose serious challenges to digital Forensics. The acquisition of digital evidence is hindered by the number and extreme variety of IoT items, often lacking physical interfaces, connected in unprotected networks, feeding data to uncontrolled cloud services. In this paper we address "Information Quality" in IoT Forensics, taking into account different levels of complexity and included human factors. After drawing a theoretical framework on data quality and information quality, we focus on forensic analysis challenges in IoT environments, providing a use case of evidence collection for investigative purposes. At the end, we propose a formal framework for assessing information quality of IoT devices for Forensics analysis.Comment: accepted for publication in Journal of Applied Logics (2020

    Ontology‐driven perspective of CFRaaS

    Get PDF
    A Cloud Forensic Readiness as a Service (CFRaaS) model allows an environment to preemptively accumulate relevant potential digital evidence (PDE) which may be needed during a post‐event response process. The benefit of applying a CFRaaS model in a cloud environment, is that, it is designed to prevent the modification/tampering of the cloud architectures or the infrastructure during the reactive process, which if it could, may end up having far‐reaching implications. The authors of this article present the reactive process as a very costly exercise when the infrastructure must be reprogrammed every time the process is conducted. This may hamper successful investigation from the forensic experts and law enforcement agencies perspectives. The CFRaaS model, in its current state, has not been presented in a way that can help to classify or visualize the different types of potential evidence in all the cloud deployable models, and this may limit the expectations of what or how the required PDE may be collected. To address this problem, the article presents the CFRaaS from a holistic ontology‐driven perspective, which allows the forensic experts to be able to apply the CFRaaS based on its simplicity of the concepts, relationship or semantics between different form of potential evidence, as well as how the security of a digital environment being investigated could be upheld. The CFRaaS in this context follows a fundamental ontology engineering approach that is based on the classical Resource Description Framework. The proposed ontology‐driven approach to CFRaaS is, therefore, a knowledge‐base that uses layer‐dependencies, which could be an essential toolkit for digital forensic examiners and other stakeholders in cloud‐security. The implementation of this approach could further provide a platform to develop other knowledge base components for cloud forensics and security

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-
    corecore