509,413 research outputs found

    Geometric Capacity Studies for DTV Transmitter Identification By Using Kasami Sequences

    Get PDF
    The transmitter identification of the DTV systems becomes crucial nowadays. Transmitter identification (TxID, or transmitter fingerprinting) technique is used to detect, diagnose and classify the operating status of any radio transmitter of interest. A pseudo random sequence was proposed to be embedded into the DTV signal before transmission. Thus, the transmitter identification can be realized by invoking the cross-correlation functions between the received signal and the possible candidates of the pseudo random sequences. Gold sequences and Kasami sequences are two excellent candidates for the transmitter ID sequences as they provide a large family of nearly-orthogonal codes. In order to investigate the sensitivity of the transmitter identification in different topologies and Kasami sequences with different length, we present the analysis here for four different geometric layouts, namely circular distribution, doubly concentric and circular distribution, square array and hexagonal tessellation. The covered area and the lowest received signal-to-interference ratio are considered as two essential parameters for the multiple-transmitter identification. It turns out to be that the larger the Kasami sequence length, the larger the received signal-to-interference ratio. Our new analysis can be used to determine the required Kasami sequence length for a specific broadcasting coverage

    두 p진 λ°μ‹œλ©”μ΄μ…˜ μˆ˜μ—΄ κ°„μ˜ μƒν˜Έμƒκ΄€λ„

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2017. 2. λ…Έμ’…μ„ .In this dissertation, the cross-correlation between two differently decimated sequences of a pp-ary m-sequence is considered. Two main contributions are as follows. First, for an odd prime pp, n=2mn=2m, and a pp-ary m-sequence of period pnβˆ’1p^n -1, the cross-correlation between two decimated sequences by 22 and dd are investigated. Two cases of dd, d=(pm+1)22d=\frac{(p^m +1)^2}{2} with pm≑1(mod4)p^m \equiv 1 \pmod4 and d=(pm+1)2pe+1d=\frac{(p^m +1)^2}{p^e +1} with odd m/em/e are considered. The value distribution of the cross-correlation function for each case is completely deterimined. Also, by using these decimated sequences, two new families of pp-ary sequences of period pnβˆ’12\frac{p^n -1}{2} with good correlation property are constructed. Second, an upper bound on the magnitude of the cross-correlation function between two decimated sequences of a pp-ary m-sequence is derived. The two decimation factors are 22 and 2(pm+1)2(p^m +1), where pp is an odd prime, n=2mn=2m, and pm≑1(mod4)p^m \equiv 1 \pmod4. In fact, these two sequences corresponds to the sequences used for the construction of pp-ary Kasami sequences decimated by 22. The upper bound is given as 32pm+12\frac{3}{2}p^m + \frac{1}{2}. Also, using this result, an upper bound of the cross-correlation magnitude between a pp-ary m-sequence and its decimated sequence with the decimation factor d=(pm+1)22d=\frac{(p^m +1)^2}{2} is derived.1 Introduction 1 1.1 Background 1 1.2 Overview of This Dissertation 7 2 Preliminaries 9 2.1 Finite Fields 9 2.2 Trace Functions and Sequences 11 2.3 Cross-Correlation Between Two Sequences 13 2.4 Characters and Weils Bound 15 2.5 Trace-Orthogonal Basis 16 2.6 Known Exponential Sums 17 2.7 Cross-Correlation of pp-ary Kasami Sequence Family 18 2.8 Previous Results on the Cross-Correlation for Decimations with gcd⁑(pnβˆ’1,d)=pn/2+12\gcd(p^n -1, d)=\frac{p^{n/2}+1}{2} 20 2.9 Cross-Correlation Between Two Decimated Sequences by 22 and d=4d=4 or pn+12\frac{p^n +1}{2} 23 3 New pp-ary Sequence Families of Period pnβˆ’12\frac{p^n -1}{2} with Good Correlation Property Using Two Decimated Sequences 26 3.1 Cross-Correlation for the Case of d=(pm+1)22d=\frac{(p^m +1)^2}{2} 27 3.2 Cross-Correlation for the Case of d=(pm+1)2pe+1d=\frac{(p^m +1)^2}{p^e +1} 37 3.3 Construction of New Sequence Families 43 4 Upper Bound on the Cross-Correlation Between Two Decimated pp-ary Sequences 52 4.1 Cross-Correlation Between s(2t+i)s(2t+i) and s(2(pm+1)t+j)s(2(p^m +1)t +j) 53 4.2 Cross-Correlation Between s(t)s(t) and s((pm+1)22t)s(\frac{(p^m +1)^2}{2} t) 66 5 Conclusions 69 Bibliography 72 Abstract (In Korean) 80Docto
    • …
    corecore