1,568 research outputs found

    Trapezoidal Spherical Fuzzy Numbers and its Application to Fuzzy Risk Analysis

    Get PDF
    Spherical fuzzy sets are a broader type of fuzzy sets that have the ability to handle various scenarios using their membership, non-membership, and neutral membership grades. These sets require that the total of the squares of these grades be no greater than one. This condition extends the possible values for the three grades and enables decision makers to have a wider range of options when assessing a situation. In solving real life problems, it is necessary to describe a real number as a spherical fuzzy set to incorporate the fuzziness, thus, the need to use trapezoidal spherical fuzzy numbers (TSFN).  In this paper, the membership functions of the TSFN, their arithmetic operations and their properties are discussed. Also, a ranking function is proposed to order the TSFNs. All these are used to solve a fuzzy risk analysis problem whose parameters are presented as TSFNs

    MADM Using m-Generalized q-Neutrosophic Sets

    Get PDF

    A New Correlation Coefficient for T-Spherical Fuzzy Sets and Its Application in Multicriteria Decision-Making and Pattern Recognition

    Get PDF
    The goal of this paper is to design a new correlation coefficient for -spherical fuzzy sets (TSFSs), which can accurately measure the nature of correlation (i.e., positive and negative) as well as the degree of relationship between TSFS. In order to formulate our proposed idea, we had taken inspiration from the statistical concept of the correlation coefficient. While doing so, we firstly introduce the variance and covariance of two TSFS and then constructed our scheme using these two newly defined notions. The numerical value of our proposed correlation coefficient lies within the interval , as it should be from a statistical point of view, whereas the existing methods cannot measure the negative correlation between TSFS, as their numerical value falls within the interval , which is not reasonable both statistically and intuitively. This aspect has also been thoroughly demonstrated using some numerical examples. The comparison results witnessed the dominance and upper hand of our proposed method over the existing definitions, with reliable and better results. In order to demonstrate the feasibility, usefulness, and practical application, we applied our proposed scheme to solve technical and scientific problems of multicriteria decision-making and pattern recognition. The numerical results show that our proposed scheme is practically suitable, technically applicable, and intuitively reasonable.publishedVersio

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    New Development of Neutrosophic Probability, Neutrosophic Statistics, Neutrosophic Algebraic Structures, and Neutrosophic & Plithogenic Optimizations

    Get PDF
    This Special Issue puts forward for discussion state-of-the-art papers on new topics related to neutrosophic theories, such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic algebraic structures, neutrosophic image processing, neutrosophic image classification, neutrosophic computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic data analytics, neutrosophic deep learning, neutrosophic symmetry, and their applications in the real world. This book leads to the further advancement of the neutrosophic and plithogenic theories of NeutroAlgebra and AntiAlgebra, NeutroGeometry and AntiGeometry, Neutrosophic n-SuperHyperGraph (the most general form of graph of today), Neutrosophic Statistics, Plithogenic Logic as a generalization of MultiVariate Logic, Plithogenic Probability and Plithogenic Statistics as a generalization of MultiVariate Probability and Statistics, respectively, and presents their countless applications in our every-day world

    Decision support algorithm under SV-neutrosophic hesitant fuzzy rough information with confidence level aggregation operators

    Get PDF
    To deal with the uncertainty and ensure the sustainability of the manufacturing industry, we designed a multi criteria decision-making technique based on a list of unique operators for single-valued neutrosophic hesitant fuzzy rough (SV-NHFR) environments with a high confidence level. We show that, in contrast to the neutrosophic rough average and geometric aggregation operators, which are unable to take into account the level of experts' familiarity with examined objects for a preliminary evaluation, the neutrosophic average and geometric aggregation operators have a higher level of confidence in the fundamental idea of a more networked composition. A few of the essential qualities of new operators have also been covered. To illustrate the practical application of these operators, we have given an algorithm and a practical example. We have also created a manufacturing business model that takes sustainability into consideration and is based on the neutrosophic rough model. A symmetric comparative analysis is another tool we use to show the feasibility of our proposed enhancements

    Semi-supervised model-based clustering with controlled clusters leakage

    Full text link
    In this paper, we focus on finding clusters in partially categorized data sets. We propose a semi-supervised version of Gaussian mixture model, called C3L, which retrieves natural subgroups of given categories. In contrast to other semi-supervised models, C3L is parametrized by user-defined leakage level, which controls maximal inconsistency between initial categorization and resulting clustering. Our method can be implemented as a module in practical expert systems to detect clusters, which combine expert knowledge with true distribution of data. Moreover, it can be used for improving the results of less flexible clustering techniques, such as projection pursuit clustering. The paper presents extensive theoretical analysis of the model and fast algorithm for its efficient optimization. Experimental results show that C3L finds high quality clustering model, which can be applied in discovering meaningful groups in partially classified data

    Fuzzy Systems

    Get PDF
    This book presents some recent specialized works of theoretical study in the domain of fuzzy systems. Over eight sections and fifteen chapters, the volume addresses fuzzy systems concepts and promotes them in practical applications in the following thematic areas: fuzzy mathematics, decision making, clustering, adaptive neural fuzzy inference systems, control systems, process monitoring, green infrastructure, and medicine. The studies published in the book develop new theoretical concepts that improve the properties and performances of fuzzy systems. This book is a useful resource for specialists, engineers, professors, and students

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin
    • 

    corecore