448 research outputs found

    Handbook of plant and soil analysis for agricultural systems

    Get PDF
    [SPA] Este libro recopila diferentes protocolos para el análisis de plantas y suelos para sistemas agrícolas. Nuestro objetivo es proporcionar un conjunto completo de indicadores para evaluar la productividad de los cultivos, la calidad de los cultivos, la calidad del suelo y la fertilidad del suelo con procedimientos y métodos viables y sólidos. La evaluación de la sostenibilidad de los agroecosistemas requiere la selección de indicadores adecuados y su medida. El presente manual ha compilado diferentes indicadores para evaluar el crecimiento de los cultivos, la incidencia de plagas y enfermedades, el rendimiento de la granja, la calidad de los cultivos y las características nutricionales, los análisis físicos del suelo, los análisis químicos del suelo y los análisis biológicos del suelo. El libro está organizado en tres partes: i) análisis de plantas y cultivos, ii) análisis físico-químicos del suelo y iii) análisis biológicos del suelo. En total, proporcionamos 90 procedimientos para el análisis de plantas y suelos, incluida la importancia y las aplicaciones, el principio del método descrito, los reactivos necesarios, los materiales y equipos, la descripción detallada del procedimiento, los cálculos necesarios y algunas observaciones específicas.[ENG] This books compiles different protocols for analysis of plant and soil for agricultural systems. We aim to provide a complete set of indicators to assess crop productivity, crop quality, soil quality and soil fertility with feasible and robust procedures and methods. The assessment of the sustainability of agroecosystems needs the selection of suitable indicators and their measure. The present handbook has compiled different indicators to assess crop growth, incidence of pests and diseases, farm yield, crop quality and nutritional characteristics, soil physical analyses, soil chemical analyses and soil biological analyses. The book is organized in three parts: i) plant and crop analyses, ii) soil physicochemical analyses and iii) soil biological analyses. In total we provide 90 procedures for plant and soil analysis, including the importance and applications, the principle of the method described, the reagents needed, the materials and equipment, the detailed description of the procedure, the calculations required and some specific remarks.This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 72800

    The 1983 NASA/ASEE Summer Faculty Fellowship Research Program research reports

    Get PDF
    The 1983 NASA/ASEE Summary Faculty Fellowship Research Program was conducted by Texas A&M University and the Lyndon B. Johnson Space Center (JSC). The 10-week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the programs, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members, (2) to stimulate an exchange of ideas between participants and NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at JSC engaged in a research project commensurate with their interests and background. They worked in collaboration with a NASA/JSC colleague. This document is a compilation of final reports on their research during the summer of 1983

    Emerging Pollutants in the Environment

    Get PDF
    This edited book, Emerging Pollutants in the Environment Current and Further Implications, includes overviews by significant researchers on the topic of emerging pollutants toxicology, which covers the hazardous effects of common emerging xenobiotics employed in our every day anthropogenic activities. We hope that this book will meet the expectations and needs of all those who are interested in the negative implications of several emerging pollutants on living species

    Microbial diversity and biogeochemical processes in the Deilmann tailings management facility, Key Lake, Saskatchewan

    Get PDF
    The Deilmann Tailings Management Facility (DTMF) at Key Lake in northern Saskatchewan, Canada, is an active deposition site for uranium tailings and it has been in operation since 1996. In terms of geochemical stability of the tailings, a ferrihydrite secondary phase is utilized for the sequestration of contaminants, such as As, Ni, Mo, and Se, under alkaline and highly oxic conditions. Arsenic is highly abundant in the DTMF tailings and the principal environmental concern is the possibility for leaching of ferrihydrite-attached As into the surrounding environment. Microorganisms can proliferate in a broad range of habitats and their activities are key factors in determining fate and transport of contaminants in various environments. This thesis attempts to obtain insights into the biogeochemical processes that may occur during the early phase of the DTMF’s history that could potentially become significant over extended periods of time that run from 100’s to 1000’s of years. Hence, a primary focus was to characterize microbial diversity and extrapolate their potential functional roles as well as their potential to chemically alter the Eh and ferrihydrite, which are the primary controlling conditions within the DTMF tailings and in the mineral secondary phase, respectively. To achieve these goals, two molecular techniques (clone library construction and Ion Torrent sequencing), a range of conventional culture-based techniques, metabolic assays addressing metabolic transformation and resistance to metals/metalloids, microscopic technique (Confocal Laser Scanning Microscope), spectroscopic analyses (Scanning Transmission X-ray Microscope) and bench-scale microcosm assays were carried out. Culture-dependent and -independent methods revealed that the most prevalent microbial groups in the water column, tailings mass and at the tailings-water interface affiliated into phyla (e.g., Proteobacteria, Actinobacteria, Firmicutes and Bacteriodetes) that have previously been detected at uranium-, heavy metal- and complex hydrocarbon-contaminated sites. Phylotypes closely related to well-characterized sulfate-, thiosulfate- and iron-reducing bacteria (e.g., Desulfosporosinus, Dethiobacter, Geoalkalibacter, Ralstonia, Georgfuchsia) were also detected at low frequency, with the exception of the tailings-water interface where sequences closely related to Desulfosporosinus were abundant. The readily culturable heterotrophs (e.g., Pseudomonas, Arthrobacter, Massilia, Hydrogenophaga, Polaromonas, Bacillus) retrieved from the tailings exhibited reducing/oxidizing capabilities as well as high tolerance to metal/metalloids. Bench scale microcosm assays showed that heterotrophs native to the DTMF site could not only reduce ferrihydrite but could also create highly reducing (< -300 mV) conditions within the tailings amenable to strict anaerobic bacteria such as Desulfosporosinus. STXM image analyses confirmed the presence of reduced iron in close proximity to bacterial cells in biofilm grown in situ and in microcosm tailings, strongly suggesting that ferrihydrite served as electron acceptor during microbial processes. Reduced iron detected in situ also indicated that microscale iron reduction could occur even though macroscale DTMF chemistry remained oxidizing. Overall, the nature of microbial community present in the DMTF system strongly indicated that complex hydrocarbons (e.g., kerosene) discharged into the tailings during processing could potentially support microbial processes that involve Fe and S cycling and that this process could become significant over extended period of times, contributing to arsenic escape into the environment

    Physiological and biochemical adaptation to salinity in wild halophytes suitable for Mediterranean agriculture

    Get PDF
    Due to the accelerating processes of soil salinization and shortage of fresh water, the practice of saline agriculture is gaining momentum in many areas of the world. However, there are some concerns that using saline water for irrigation may be non-environmentally sustainable, with potential to cause irreversible soil degradation. In addition, there is a lack of information on the morphological, physiological, and biochemical changes that can occur in plants when irrigated with saline water. In light of the above, the major aim of this work was to investigate the effects of a range of water salinity levels and irrigation regimes on the performances of salt tolerant species promising as future crop plants for saline agriculture. The following objectives were addressed: To determine the effects of different water regimes (leaching irrigation vs. no leaching irrigation) with water at increasing salinity concentrations on the growth, ion accumulation and water relations of Sorghum bicolor plants grown under saline soil conditions. To describe the germination response of Salicornia europaea seeds across a wide range of water salinity levels through six reliable indices for screening salinity tolerance at the seed germination stage. To explore the different physiological responses of six wild halophytes commonly found in the Mediterranean area (Artemisia absinthium, Artemisia vulgaris, Atriplex halimus, Chenopodium album, Salsola komarovii, and Sanguisorba minor), and rank their tolerance after exposure to growing levels of water salinity. To identify the main adaptation mechanisms that distinguish C3 from C4 halophytes when exposed to increasing salinity in the growth media, through a comparative study between the C3 species Atriplex hortensis and the C4 species Atriplex halimus. To identify the main adaptation mechanisms that distinguish annual from perennial halophytes when exposed to severe conditions of salinity and drought, through a comparative analysis between two annual Salicornia spp. and the perennial Sarcocornia fruticosa

    Biosignature Preservation and Detection in Mars Analog Environments : May 16–18, 2016, Lake Tahoe, Nevada

    Get PDF
    Our objective is to focus strategies to detect a range of possible biosignatures on Mars in different categories of geologic settings by assessing the attributes and preservation potential of various biosignatures in different Mars-analog habitable environments on Earth. We are seeking a better understanding of three broad classes of ancient environments known to exist in the martian geologic record: 1.Lacustrine and deltaic sediments, 2.Near-surface chemical sediments (including hydrothermal and pedogenic), or 3. Deep crustal rocks (including hydrothermally altered).Universities Space Research AssociationNational Aeronautics and Space AdministrationUniversities Space Research AssociationNational Aeronautics and Space AdministrationLunar and Planetary InstituteConveners: Lindsay Hays, Jet Propulsion Laboratory, David Beaty, Jet Propulsion Laboratory, Mary Voytek, NASA Headquarters, Michael Meyer, NASA Headquarter
    corecore