2,000 research outputs found

    DEVELOPING NOVEL COMPUTER-AIDED DETECTION AND DIAGNOSIS SYSTEMS OF MEDICAL IMAGES

    Get PDF
    Reading medical images to detect and diagnose diseases is often difficult and has large inter-reader variability. To address this issue, developing computer-aided detection and diagnosis (CAD) schemes or systems of medical images has attracted broad research interest in the last several decades. Despite great effort and significant progress in previous studies, only limited CAD schemes have been used in clinical practice. Thus, developing new CAD schemes is still a hot research topic in medical imaging informatics field. In this dissertation, I investigate the feasibility of developing several new innovative CAD schemes for different application purposes. First, to predict breast tumor response to neoadjuvant chemotherapy and reduce unnecessary aggressive surgery, I developed two CAD schemes of breast magnetic resonance imaging (MRI) to generate quantitative image markers based on quantitative analysis of global kinetic features. Using the image marker computed from breast MRI acquired pre-chemotherapy, CAD scheme enables to predict radiographic complete response (CR) of breast tumors to neoadjuvant chemotherapy, while using the imaging marker based on the fusion of kinetic and texture features extracted from breast MRI performed after neoadjuvant chemotherapy, CAD scheme can better predict the pathologic complete response (pCR) of the patients. Second, to more accurately predict prognosis of stroke patients, quantifying brain hemorrhage and ventricular cerebrospinal fluid depicting on brain CT images can play an important role. For this purpose, I developed a new interactive CAD tool to segment hemorrhage regions and extract radiological imaging marker to quantitatively determine the severity of aneurysmal subarachnoid hemorrhage at presentation and correlate the estimation with various homeostatic/metabolic derangements and predict clinical outcome. Third, to improve the efficiency of primary antibody screening processes in new cancer drug development, I developed a CAD scheme to automatically identify the non-negative tissue slides, which indicate reactive antibodies in digital pathology images. Last, to improve operation efficiency and reliability of storing digital pathology image data, I developed a CAD scheme using optical character recognition algorithm to automatically extract metadata from tissue slide label images and reduce manual entry for slide tracking and archiving in the tissue pathology laboratories. In summary, in these studies, we developed and tested several innovative approaches to identify quantitative imaging markers with high discriminatory power. In all CAD schemes, the graphic user interface-based visual aid tools were also developed and implemented. Study results demonstrated feasibility of applying CAD technology to several new application fields, which has potential to assist radiologists, oncologists and pathologists improving accuracy and consistency in disease diagnosis and prognosis assessment of using medical image

    MRI-Based Radiomics Analysis for the Pretreatment Prediction of Pathologic Complete Tumor Response to Neoadjuvant Systemic Therapy in Breast Cancer Patients: A Multicenter Study

    Get PDF
    Simple SummaryThe prediction of pathologic complete response (pCR) to neo-adjuvant systemic therapy (NST) based on radiological assessment of pretreatment MRI exams in breast cancer patients is not possible to date. In this study, we investigated the value of pretreatment MRI-based radiomics analysis for the prediction of pCR to NST. Radiomics, clinical, and combined models were developed and validated based on MRI exams containing 320 tumors collected from two hospitals. The clinical models significantly outperformed the radiomics models for the prediction of pCR to NST and were of similar or better performance than the combined models. This indicates poor performance of the radiomics features and that in these scenarios the radiomic features did not have an added value for the clinical models developed. Due to previous and current work, we tentatively attribute the lack of significant improvement in clinical models following the addition of radiomics features to the effects of variations in acquisition and reconstruction parameters. The lack of reproducibility data meant this effect could not be analyzed. These results indicate the need for reproducibility studies to preselect reproducible features in order to properly assess the potential of radiomics.This retrospective study investigated the value of pretreatment contrast-enhanced Magnetic Resonance Imaging (MRI)-based radiomics for the prediction of pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients. A total of 292 breast cancer patients, with 320 tumors, who were treated with neo-adjuvant systemic therapy and underwent a pretreatment MRI exam were enrolled. As the data were collected in two different hospitals with five different MRI scanners and varying acquisition protocols, three different strategies to split training and validation datasets were used. Radiomics, clinical, and combined models were developed using random forest classifiers in each strategy. The analysis of radiomics features had no added value in predicting pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients compared with the clinical models, nor did the combined models perform significantly better than the clinical models. Further, the radiomics features selected for the models and their performance differed with and within the different strategies. Due to previous and current work, we tentatively attribute the lack of improvement in clinical models following the addition of radiomics to the effects of variations in acquisition and reconstruction parameters. The lack of reproducibility data (i.e., test-retest or similar) meant that this effect could not be analyzed. These results indicate the need for reproducibility studies to preselect reproducible features in order to properly assess the potential of radiomics

    Functional Magnetic Resonance Imaging of Breast Cancer

    Get PDF
    This thesis examines the use of magnetic resonance imaging (MRI) techniques in the detection of breast cancer and the prediction of pathological complete response (pCR) to neoadjuvant chemotherapy (NACT). This thesis compares the diagnostic performance of diffusion-weighted imaging (DWI) models in the breast using a systematic review and meta-analysis. Advanced diffusion models have been proposed that may improve the performance of standard DWI using the apparent diffusion coefficient (ADC) to discriminate between malignant and benign breast lesions. Pooling the results from 73 studies, comparable diagnostic accuracy is shown using the ADC and parameters from the intra-voxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) models. This work highlights a lack of standardisation in DWI protocols and methodology. Conventional acquisition techniques used in DWI often suffer from image artefacts and low spatial resolution. A multi-shot DWI technique, multiplexed sensitivity encoding (MUSE), can improve the image quality of DWI. A MUSE protocol has been optimised through a series of phantom experiments and validated in 20 patients. Comparing MUSE to conventional DWI, statistically significant improvements are shown in distortion and blurring metrics and qualitative image quality metrics such as lesion conspicuity and diagnostic confidence, increasing the clinical utility of DWI. This thesis investigates the use of dynamic contrast-enhanced MRI (DCE-MRI) in the detection of breast cancer and the prediction of pCR. Abbreviated MRI (ABB-MRI) protocols have gained increasing attention for the detection of breast cancer, acquiring a shortened version of a full diagnostic protocol (FDP-MRI) in a fraction of the time, reducing the cost of the examination. The diagnostic performance of abbreviated and full diagnostic protocols is systematically compared using a meta-analysis. Pooling 13 studies, equivalent diagnostic accuracy is shown for ABB-MRI in cohorts enriched with cancers, and lower but not significantly different diagnostic performance is shown in screening cohorts. Higher order imaging features derived from pre-treatment DCE-MRI could be used to predict pCR and inform decisions regarding targeted treatment, avoiding unnecessary toxicity. Using data from 152 patients undergoing NACT, radiomics features are extracted from baseline DCE-MRI and machine learning models trained to predict pCR with moderate accuracy. The stability of feature selection using logistic regression classification is demonstrated and a comparison of models trained using features from different time points in the dynamic series demonstrates that a full dynamic series enables the most accurate prediction of pCR.GE Healthcare funded PhD Studentshi
    • …
    corecore