47,332 research outputs found

    The Aemulus Project III: Emulation of the Galaxy Correlation Function

    Get PDF
    Using the N-body simulations of the AEMULUS Project, we construct an emulator for the non-linear clustering of galaxies in real and redshift space. We construct our model of galaxy bias using the halo occupation framework, accounting for possible velocity bias. The model includes 15 parameters, including both cosmological and galaxy bias parameters. We demonstrate that our emulator achieves ~ 1% precision at the scales of interest, 0.1<r<10 h^{-1} Mpc, and recovers the true cosmology when tested against independent simulations. Our primary parameters of interest are related to the growth rate of structure, f, and its degenerate combination fsigma_8. Using this emulator, we show that the constraining power on these parameters monotonically increases as smaller scales are included in the analysis, all the way down to 0.1 h^{-1} Mpc. For a BOSS-like survey, the constraints on fsigma_8 from r<30 h^{-1} Mpc scales alone are more than a factor of two tighter than those from the fiducial BOSS analysis of redshift-space clustering using perturbation theory at larger scales. The combination of real- and redshift-space clustering allows us to break the degeneracy between f and sigma_8, yielding a 9% constraint on f alone for a BOSS-like analysis. The current AEMULUS simulations limit this model to surveys of massive galaxies. Future simulations will allow this framework to be extended to all galaxy target types, including emission-line galaxies.Comment: 14 pages, 8 figures, 1 table; submitted to ApJ; the project webpage is available at https://aemulusproject.github.io ; typo in Figure 7 and caption updated, results unchange

    Edge-enhancing Filters with Negative Weights

    Full text link
    In [DOI:10.1109/ICMEW.2014.6890711], a graph-based denoising is performed by projecting the noisy image to a lower dimensional Krylov subspace of the graph Laplacian, constructed using nonnegative weights determined by distances between image data corresponding to image pixels. We~extend the construction of the graph Laplacian to the case, where some graph weights can be negative. Removing the positivity constraint provides a more accurate inference of a graph model behind the data, and thus can improve quality of filters for graph-based signal processing, e.g., denoising, compared to the standard construction, without affecting the costs.Comment: 5 pages; 6 figures. Accepted to IEEE GlobalSIP 2015 conferenc
    • …
    corecore