479 research outputs found

    Accélération non adiabatique des ions causée par des ondes électromagnétiques (observations de Cluster et Double Star) et réponse du champ géomagnétique aux variations de la pression dynamique du vent solaire

    Get PDF
    Cette thèse comporte deux thèmes principaux: l'un concerne l'accélération non adiabatique des ions dans la couche de plasma proche de la Terre, l'autre les pulsations géomagnétiques dues à la décroissance de la pression dynamique du vent solaire. L'accélération nonadiabatique des ions de la couche de plasma est importante pour comprendre la formation du courant annulaire et les injections énergétiques des sous-orages. Dans la première partie de cette thèse, nous présentons des études de cas d'accélération non adiabatique des ions de la couche de plasma observés par Cluster et TC-1 Double Star dans la queue magnétique proche de la Terre (par exemple à (X, Y, Z)=(-7.7, 4.6, 3.0) RT lors de l'évènement du 30 octobre 2006), beaucoup plus près de la Terre que ceux qui avaient été précédemment observés. Nous trouvons que les variations du flux d'énergie des ions, qui sont caractérisées par une décroissance entre 10 eV et 20 keV et une augmentation entre 28 keV et 70 keV, sont causées par l'accélération non adiabatique des ions associée étroitement avec les fortes fluctuations du champ électromagnétique autour de la gyrofréquence des ions H+. Nous trouvons aussi que les ions après l'accélération non adiabatique sont groupés en phase de gyration et c'est la première fois que ceci est trouvé dans la couche de plasma alors que cet effet a été observé dans le vent solaire dans les années 1980. Nous interprétons les variations de flux d'énergie des ions et les groupements en phase de gyration en utilisant un modèle non adiabatique. Les résultats analytiques et les spectres simulés sont en bon accord avec les observations. Cette analyse suggère que cette acceleration nonadiabatique associée aves les fluctuations du cham magnétique est un mécanisme efficace pour l'accélération des ions dans la couche de plasma proche de la Terre. Les structures de flux d'énergie présentées peuvent être uilisées comme un proxy pour identifier ce processus dynamique. Dans le deuxième thème, nous étudions la réponse du champ géomagnétique à une impulsion de la pression dynamique (Psw) du vent solaire qui a atteint la magnétosphère le 24 août 2005. En utilisant les données du champ géomagnétique à haute résolution fournies par 15 stations au sol et les données des satellites Geotail, TC-1 et TC-2, nous avons étudié les pulsations géomagnétiques aux latitudes aurorales dues à la décroissance brusque de Psw dans la limite arrière de l'impulsion. Les résultats montrent que la décroissance brutale de Psw peut exciter une pulsation globale dans la gamme de fréquence 4.3-11.6 mHz. L'inversion des polarisations entre deux stations des latitudes aurorales, la densité spectrale de puissance (PSD) plus grande près de la latitude de résonance et la fréquence augmentant avec la diminution de la latitude indiquent que les pulsations sont associées avec la résonance des lignes de champ (FLR). La fréquence résonante fondamentale (la fréquence du pic de PSD entre 4.3-5.8 mHz) dépend du temps magnétique local et est maximale autour du midi local magnétique. Cette caractéristique est due au fait que la dimension de la cavité magnétosphérique dépend du temps et est minimale à midi. Une onde harmonique est aussi observée à environ 10 mHz, qui est maximale dans le secteur jour, et est fortement atténuée lorsque on va vers le coté nuit. La comparaison entre les PSDs des pulsations provoquées pas l'augmentation brutale et la décroissance brutale de Psw montre que la fréquence des pulsations est inversement proportionnelle à la dimension de la magnétopause. Puisque la résonance des lignes de champ (FLR) est excitée par des ondes cavité compressée/guide d'onde, ces résultats indiquent que la fréquence de résonance dans la cavité magnétosphérique/guide d'onde est due non seulement aux paramètres du vent solaire mais est aussi influencée par le temps magnétique local du point d'observation.This doctoral dissertation includes two main topics: one is about the nonadiabatic acceleration of ions in the near-Earth plasma sheet, the other is about the geomagnetic pulsations driven by the decrease of solar wind dynamic pressure. The nonadiabatic acceleration of plasma sheet ions is important to understand the formation of ring current and substorm energetic injections. In the first part, we present case studies of nonadiabatic acceleration of plasma sheet ions observed by Cluster and Double Star TC-1 in the near-Earth magnetotail (e.g. at (X, Y, Z)=(-7.7, 4.6, 3.0) RE in the 30 October 2006 event), much closer to the Earth than previously reported. We find that the ion energy flux variations, which are characterized by a decrease over 10 eV-20 keV and an increase over 28-70 keV, are caused by the ion nonadiabatic acceleration closely associated with strong electromagnetic field fluctuations around the H+ gyrofrequency. We also find that the ions after nonadiabatic acceleration have 'bunched gyrophases', which is the first report in the plasma sheet since the 'gyrophase bunching effect' was observed in the solar wind in 1980s. We interpret the ion energy flux variations and the bunched gyrophases by using a nonadiabatic model. The analytic results and simulated spectrums are in good agreement with the observations. This analysis suggests that nonadiabatic acceleration associated with magnetic field fluctuations is an effective mechanism for ion energization in the near-Earth plasma sheet. The presented energy flux structures can be used as a proxy to identify this dynamic process. In the second part, we investigate the response of geomagnetic field to an impulse of solar wind dynamic pressure (Psw), which hits the magnetosphere on 24 August 2005. Using the high resolution geomagnetic field data from 15 ground stations and the data from Geotail, TC-1 and TC-2, we studied the geomagnetic pulsations at auroral latitudes driven by the sharp decrease of Psw in the trailing edge of the impulse. The results show that the sharp decrease of Psw can excite a global pulsation in the frequency range 4.3-11.6 mHz. The reversal of polarizations between two auroral latitude stations, larger Power Spectral Density (PSD) close to resonant latitude and increasing frequency with decreasing latitude indicate that the pulsations are associated with Field Line Resonance (FLR). The fundamental resonant frequency (the peak frequency of PSD between 4.3-5.8 mHz) is magnetic local time dependent and largest around magnetic local noon. This feature is due to the fact that the size of magnetospheric cavity is local time dependent and smallest at noon. A second harmonic wave at about 10 mHz is also observed, which is strongest in the daytime sector, and is heavily attenuated while moving to night side. The comparison between the PSDs of the pulsations driven by sharp increase and sharp decrease of Psw shows that the frequency of pulsations is inversely proportional to the size of the magnetopause. Since the FLR is excited by compressional cavity/waveguide waves, these results indicate that the resonant frequency in the magnetospheric cavity/waveguide is decided not only by solar wind parameters but also by magnetic local time of observation point

    The Radiation Structure of PSR B2016++28 Observed with FAST

    Full text link
    With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016++28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a conal model, and the peak separation of intensity-dependent pulse profiles increases with intensity. The integrated pulses are obviously frequency dependent (pulse width decreases by 20%\sim\,20\% as frequency increases from 300 MHz to 750 MHz), but the structure of single pulses changes slightly (the corresponding correlation scale decreases by only 1%\sim\,1\%). This disparity between mean and single pulses provides independent evidence for the existence of the RS-type vacuum inner gap, indicating a strong bond between particles on the pulsar surface. Diffused drifting sub-pulses are analyzed. The results show that the modulation period along pulse series (P3P_3) is positively correlated to the separation between two adjacent sub-pulses (P2P_2). This correlation may hint a rough surface on the pulsar, eventually resulting in the irregular drift of sparks. All the observational results may have significant implications in the dynamics of pulsar magnetosphere and are discussed extensively in this paper.Comment: Sci. China-Phys. Mech. Astron. 62, 959505 (2019

    Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    Get PDF
    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics

    Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

    Get PDF
    Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <∼ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long

    Control of ULF Wave Accessibility to the Inner Magnetosphere by the Convection of Plasma Density

    Get PDF
    During periods of storm activity and enhanced convection, the plasma density in the afternoon sector of the magnetosphere is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed and alters the propagation of ULF waves launched from the magnetopause. Therefore, it can be expected that the accessibility of ULF wave power for radiation belt energization is sensitively dependent on the recent history of magnetospheric convection and the stage of development of the PDP. This is investigated using a 3-D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (VollandStern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic field day/night asymmetry and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside, providing an avenue for electron energization

    A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Get PDF
    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms
    corecore