1,786 research outputs found

    Some Results on Distinguishing Attacks on Stream Ciphers

    Get PDF
    Stream ciphers are cryptographic primitives that are used to ensure the privacy of a message that is sent over a digital communication channel. In this thesis we will present new cryptanalytic results for several stream ciphers. The thesis provides a general introduction to cryptology, explains the basic concepts, gives an overview of various cryptographic primitives and discusses a number of different attack models. The first new attack given is a linear correlation attack in the form of a distinguishing attack. In this attack a specific class of weak feedback polynomials for LFSRs is identified. If the feedback polynomial is of a particular form the attack will be efficient. Two new distinguishing attacks are given on classical stream cipher constructions, namely the filter generator and the irregularly clocked filter generator. It is also demonstrated how these attacks can be applied to modern constructions. A key recovery attack is described for LILI-128 and a distinguishing attack for LILI-II is given. The European network of excellence, called eSTREAM, is an effort to find new efficient and secure stream ciphers. We analyze a number of the eSTREAM candidates. Firstly, distinguishing attacks are described for the candidate Dragon and a family of candidates called Pomaranch. Secondly, we describe resynchronization attacks on eSTREAM candidates. A general square root resynchronization attack which can be used to recover parts of a message is given. The attack is demonstrated on the candidates LEX and Pomaranch. A chosen IV distinguishing attack is then presented which can be used to evaluate the initialization procedure of stream ciphers. The technique is demonstrated on four candidates: Grain, Trivium, Decim and LEX

    On the Design and Analysis of Stream Ciphers

    Get PDF
    This thesis presents new cryptanalysis results for several different stream cipher constructions. In addition, it also presents two new stream ciphers, both based on the same design principle. The first attack is a general attack targeting a nonlinear combiner. A new class of weak feedback polynomials for linear feedback shift registers is identified. By taking samples corresponding to the linear recurrence relation, it is shown that if the feedback polynomial has taps close together an adversary to take advantage of this by considering the samples in a vector form. Next, the self-shrinking generator and the bit-search generator are analyzed. Both designs are based on irregular decimation. For the self-shrinking generator, it is shown how to recover the internal state knowing only a few keystream bits. The complexity of the attack is similar to the previously best known but uses a negligible amount of memory. An attack requiring a large keystream segment is also presented. It is shown to be asymptotically better than all previously known attacks. For the bit-search generator, an algorithm that recovers the internal state is given as well as a distinguishing attack that can be very efficient if the feedback polynomial is not carefully chosen. Following this, two recently proposed stream cipher designs, Pomaranch and Achterbahn, are analyzed. Both stream ciphers are designed with small hardware complexity in mind. For Pomaranch Version 2, based on an improvement of previous analysis of the design idea, a key recovery attack is given. Also, for all three versions of Pomaranch, a distinguishing attack is given. For Achterbahn, it is shown how to recover the key of the latest version, known as Achterbahn-128/80. The last part of the thesis introduces two new stream cipher designs, namely Grain and Grain-128. The ciphers are designed to be very small in hardware. They also have the distinguishing feature of allowing users to increase the speed of the ciphers by adding extra hardware

    On Some Symmetric Lightweight Cryptographic Designs

    Get PDF
    This dissertation presents cryptanalysis of several symmetric lightweight primitives, both stream ciphers and block ciphers. Further, some aspects of authentication in combination with a keystream generator is investigated, and a new member of the Grain family of stream ciphers, Grain-128a, with built-in support for authentication is presented. The first contribution is an investigation of how authentication can be provided at a low additional cost, assuming a synchronous stream cipher is already implemented and used for encryption. These findings are then used when presenting the latest addition to the Grain family of stream ciphers, Grain-128a. It uses a 128-bit key and a 96-bit initialization vector to generate keystream, and to possibly also authenticate the plaintext. Next, the stream cipher BEAN, superficially similar to Grain, but notably using a weak output function and two feedback with carry shift registers (FCSRs) rather than linear and (non-FCSR) nonlinear feedback shift registers, is cryptanalyzed. An efficient distinguisher and a state-recovery attack is given. It is shown how knowledge of the state can be used to recover the key in a straightforward way. The remainder of this dissertation then focuses on block ciphers. First, a related-key attack on KTANTAN is presented. The attack notably uses only a few related keys, runs in less than half a minute on a current computer, and directly contradicts the designers' claims. It is discussed why this is, and what can be learned from this. Next, PRINTcipher is subjected to linear cryptanalysis. Several weak key classes are identified and it is shown how several observations of the same statistical property can be made for each plaintext--ciphertext pair. Finally, the invariant subspace property, first observed for certain key classes in PRINTcipher, is investigated. In particular, its connection to large linear biases is studied through an eigenvector which arises inside the cipher and leads to trail clustering in the linear hull which, under reasonable assumptions, causes a significant number of large linear biases. Simulations on several versions of PRINTcipher are compared to the theoretical findings

    A New Version of Grain-128 with Authentication

    Get PDF
    A new version of the stream cipher Grain-128 is proposed. The new version, Grain-128a, is strengthened against all known attacks and observations on the original Grain-128, and has built-in support for authentication. The changes are modest, keeping the basic structure of Grain-128. This gives a high confidence in Grain-128a and allows for easy updating of existing implementations

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table
    corecore