3,608 research outputs found

    CLASS_GWB: robust modeling of the astrophysical gravitational wave background anisotropies

    Full text link
    Gravitational radiation offers a unique possibility to study the large-scale structure of the Universe, gravitational wave sources and propagation in a completely novel way. Given that gravitational wave maps contain a wealth of astrophysical and cosmological information, interpreting this signal requires a non-trivial multidisciplinary approach. In this work we present the complete computation of the signal produced by compact object mergers accounting for a detailed modelling of the astrophysical sources and for cosmological perturbations. We develop the CLASS_GWB code, which allows for the computation of the anisotropies of the astrophysical gravitational wave background, accounting for source and detector properties, as well as effects of gravitational wave propagation. We apply our numerical tools to robustly compute the angular power spectrum of the anisotropies of the gravitational wave background generated by astrophysical sources in the LIGO-Virgo frequency band. The end-to-end theoretical framework we present can be easily applied to different sources and detectors in other frequency bands. Moreover, the same numerical tools can be used to compute the anisotropies of gravitational wave maps of the sky made using resolved events.Comment: 58 pages, 11 figure

    A mid-IR study of Hickson Compact Groups II. Multi-wavelength analysis of the complete GALEX-Spitzer Sample

    Get PDF
    We present a comprehensive study on the impact of the environment of compact galaxy groups on the evolution of their members using a multi-wavelength analysis, from the UV to the infrared, for a sample of 32 Hickson compact groups (HCGs) containing 135 galaxies. Fitting the SEDs of all galaxies with the state-of-the-art model of da Cunha (2008) we can accurately calculate their mass, SFR, and extinction, as well as estimate their infrared luminosity and dust content. We compare our findings with samples of field galaxies, early-stage interacting pairs, and cluster galaxies with similar data. We find that classifying the groups as dynamically "old" or "young", depending on whether or not at least one quarter of their members are early-type systems, is physical and consistent with past classifications of HCGs based on their atomic gas content. [...ABRIDGED...] We also examine their SF properties, UV-optical and mid-IR colors, and we conclude that all the evidence point to an evolutionary scenario in which the effects of the group environment and the properties of the galaxy members are not instantaneous. Early on, the influence of close companions to group galaxies is similar to the one of galaxy pairs in the field. However, as the time progresses, the effects of tidal torques and minor merging, shape the morphology and star formation history of the group galaxies, leading to an increase of the fraction of early-type members and a rapid built up of the stellar mass in the remaining late-type galaxies.Comment: Accepted for publication in A&A. Figure resolution degraded for arXiv limits, full resolution paper available at http://www.physics.uoc.gr/~bitsakis/paperII_bitsakis.pd

    Visualizing Objects and Memory Usage

    Get PDF
    International audienceMost of the current garbage collector implementations work by reachability. This means they only take care of the objects that nobody else points to. As a consequence, there are objects which are not really used but are not garbage collected because they are still referenced. Such unused but reachable objects create memory leaks. This is a problem because applications use much more memory than what is actually needed. In addition, they may get slower and crash. It is important to understand which parts of the system are instantiated but also which are used or unused. There is a plethora of work on runtime information or class instantiation visualizations but none of them show whether instances are actually used. Such information is important to identify memory leaks. In this paper, we present some visualizations that show used/unused objects in object-oriented applications. For this, we use Distribution Map which is a visualization showing spread and focus of properties across systems. We extend Distribution Maps to represent the way classes are used or not, since we distinguish between a class that just has instances from one that has used instances. To identify unused objects, we modified the Pharo Virtual Machine

    Automated monitoring and quantitative analysis of feeding behaviour in Drosophila

    Get PDF
    Food ingestion is one of the defining behaviours of all animals, but its quantification and analysis remain challenging. This is especially the case for feeding behaviour in small, genetically tractable animals such as Drosophila melanogaster. Here, we present a method based on capacitive measurements, which allows the detailed, automated and high-throughput quantification of feeding behaviour. Using this method, we were able to measure the volume ingested in single sips of an individual, and monitor the absorption of food with high temporal resolution. We demonstrate that flies ingest food by rhythmically extending their proboscis with a frequency that is not modulated by the internal state of the animal. Instead, hunger and satiety homeostatically modulate the microstructure of feeding. These results highlight similarities of food intake regulation between insects, rodents, and humans, pointing to a common strategy in how the nervous systems of different animals control food intake
    • …
    corecore