2,051 research outputs found

    A unified view on weakly correlated recurrent networks

    Get PDF
    The diversity of neuron models used in contemporary theoretical neuroscience to investigate specific properties of covariances raises the question how these models relate to each other. In particular it is hard to distinguish between generic properties and peculiarities due to the abstracted model. Here we present a unified view on pairwise covariances in recurrent networks in the irregular regime. We consider the binary neuron model, the leaky integrate-and-fire model, and the Hawkes process. We show that linear approximation maps each of these models to either of two classes of linear rate models, including the Ornstein-Uhlenbeck process as a special case. The classes differ in the location of additive noise in the rate dynamics, which is on the output side for spiking models and on the input side for the binary model. Both classes allow closed form solutions for the covariance. For output noise it separates into an echo term and a term due to correlated input. The unified framework enables us to transfer results between models. For example, we generalize the binary model and the Hawkes process to the presence of conduction delays and simplify derivations for established results. Our approach is applicable to general network structures and suitable for population averages. The derived averages are exact for fixed out-degree network architectures and approximate for fixed in-degree. We demonstrate how taking into account fluctuations in the linearization procedure increases the accuracy of the effective theory and we explain the class dependent differences between covariances in the time and the frequency domain. Finally we show that the oscillatory instability emerging in networks of integrate-and-fire models with delayed inhibitory feedback is a model-invariant feature: the same structure of poles in the complex frequency plane determines the population power spectra

    Multiple firing coherence resonances in excitatory and inhibitory coupled neurons

    Full text link
    The impact of inhibitory and excitatory synapses in delay-coupled Hodgkin--Huxley neurons that are driven by noise is studied. If both synaptic types are used for coupling, appropriately tuned delays in the inhibition feedback induce multiple firing coherence resonances at sufficiently strong coupling strengths, thus giving rise to tongues of coherency in the corresponding delay-strength parameter plane. If only inhibitory synapses are used, however, appropriately tuned delays also give rise to multiresonant responses, yet the successive delays warranting an optimal coherence of excitations obey different relations with regards to the inherent time scales of neuronal dynamics. This leads to denser coherence resonance patterns in the delay-strength parameter plane. The robustness of these findings to the introduction of delay in the excitatory feedback, to noise, and to the number of coupled neurons is determined. Mechanisms underlying our observations are revealed, and it is suggested that the regularity of spiking across neuronal networks can be optimized in an unexpectedly rich variety of ways, depending on the type of coupling and the duration of delays.Comment: 7 two-column pages, 6 figures; accepted for publication in Communications in Nonlinear Science and Numerical Simulatio

    The Spatial Structure of Stimuli Shapes the Timescale of Correlations in Population Spiking Activity

    Get PDF
    Throughout the central nervous system, the timescale over which pairs of neural spike trains are correlated is shaped by stimulus structure and behavioral context. Such shaping is thought to underlie important changes in the neural code, but the neural circuitry responsible is largely unknown. In this study, we investigate a stimulus-induced shaping of pairwise spike train correlations in the electrosensory system of weakly electric fish. Simultaneous single unit recordings of principal electrosensory cells show that an increase in the spatial extent of stimuli increases correlations at short (~10 ms) timescales while simultaneously reducing correlations at long (~100 ms) timescales. A spiking network model of the first two stages of electrosensory processing replicates this correlation shaping, under the assumptions that spatially broad stimuli both saturate feedforward afferent input and recruit an open-loop inhibitory feedback pathway. Our model predictions are experimentally verified using both the natural heterogeneity of the electrosensory system and pharmacological blockade of descending feedback projections. For weak stimuli, linear response analysis of the spiking network shows that the reduction of long timescale correlation for spatially broad stimuli is similar to correlation cancellation mechanisms previously suggested to be operative in mammalian cortex. The mechanism for correlation shaping supports population-level filtering of irrelevant distractor stimuli, thereby enhancing the population response to relevant prey and conspecific communication inputs. © 2012 Litwin-Kumar et al

    Neural oscillations as a signature of efficient coding in the presence of synaptic delays

    Get PDF
    Cortical networks exhibit ‘global oscillations’, in which neural spike times are entrained to an underlying oscillatory rhythm, but where individual neurons fire irregularly, on only a fraction of cycles. While the network dynamics underlying global oscillations have been well characterised, their function is debated. Here, we show that such global oscillations are a direct consequence of optimal efficient coding in spiking networks with synaptic delays and noise. To avoid firing unnecessary spikes, neurons need to share information about the network state. Ideally, membrane potentials should be strongly correlated and reflect a ‘prediction error’ while the spikes themselves are uncorrelated and occur rarely. We show that the most efficient representation is when: (i) spike times are entrained to a global Gamma rhythm (implying a consistent representation of the error); but (ii) few neurons fire on each cycle (implying high efficiency), while (iii) excitation and inhibition are tightly balanced. This suggests that cortical networks exhibiting such dynamics are tuned to achieve a maximally efficient population code

    Locking of correlated neural activity to ongoing oscillations

    Full text link
    Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback) and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis.Comment: 57 pages, 12 figures, published versio

    Integration of continuous-time dynamics in a spiking neural network simulator

    Full text link
    Contemporary modeling approaches to the dynamics of neural networks consider two main classes of models: biologically grounded spiking neurons and functionally inspired rate-based units. The unified simulation framework presented here supports the combination of the two for multi-scale modeling approaches, the quantitative validation of mean-field approaches by spiking network simulations, and an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most efficient spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. We further demonstrate the broad applicability of the framework by considering various examples from the literature ranging from random networks to neural field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation

    Decorrelation of neural-network activity by inhibitory feedback

    Get PDF
    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent theoretical and experimental studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. By means of a linear network model and simulations of networks of leaky integrate-and-fire neurons, we show that shared-input correlations are efficiently suppressed by inhibitory feedback. To elucidate the effect of feedback, we compare the responses of the intact recurrent network and systems where the statistics of the feedback channel is perturbed. The suppression of spike-train correlations and population-rate fluctuations by inhibitory feedback can be observed both in purely inhibitory and in excitatory-inhibitory networks. The effect is fully understood by a linear theory and becomes already apparent at the macroscopic level of the population averaged activity. At the microscopic level, shared-input correlations are suppressed by spike-train correlations: In purely inhibitory networks, they are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II)
    • …
    corecore