11,493 research outputs found

    A correct, precise and efficient integration of set-sharing, freeness and linearity for the analysis of finite and rational tree languages

    Get PDF
    It is well known that freeness and linearity information positively interact with aliasing information, allowing both the precision and the efficiency of the sharing analysis of logic programs to be improved. In this paper, we present a novel combination of set-sharing with freeness and linearity information, which is characterized by an improved abstract unification operator. We provide a new abstraction function and prove the correctness of the analysis for both the finite tree and the rational tree cases. Moreover, we show that the same notion of redundant information as identified in Bagnara et al. (2000) and Zaffanella et al. (2002) also applies to this abstract domain combination: this allows for the implementation of an abstract unification operator running in polynomial time and achieving the same precision on all the considered observable properties

    Enhanced sharing analysis techniques: a comprehensive evaluation

    Get PDF
    Sharing, an abstract domain developed by D. Jacobs and A. Langen for the analysis of logic programs, derives useful aliasing information. It is well-known that a commonly used core of techniques, such as the integration of Sharing with freeness and linearity information, can significantly improve the precision of the analysis. However, a number of other proposals for refined domain combinations have been circulating for years. One feature that is common to these proposals is that they do not seem to have undergone a thorough experimental evaluation even with respect to the expected precision gains. In this paper we experimentally evaluate: helping Sharing with the definitely ground variables found using Pos, the domain of positive Boolean formulas; the incorporation of explicit structural information; a full implementation of the reduced product of Sharing and Pos; the issue of reordering the bindings in the computation of the abstract mgu; an original proposal for the addition of a new mode recording the set of variables that are deemed to be ground or free; a refined way of using linearity to improve the analysis; the recovery of hidden information in the combination of Sharing with freeness information. Finally, we discuss the issue of whether tracking compoundness allows the computation of more sharing information

    A study of set-sharing analysis via cliques

    Get PDF
    We study the problem of efficient, scalable set-sharing analysis of logic programs. We use the idea of representing sharing information as a pair of abstract substitutions, one of which is a worst-case sharing representation called a clique set, which was previously proposed for the case of inferring pair-sharing. We use the clique-set representation for (1) inferring actual set-sharing information, and (2) analysis within a top-down framework. In particular, we define the abstract functions required by standard top-down analyses, both for sharing alone and also for the case of including freeness in addition to sharing. Our experimental evaluation supports the conclusion that, for inferring set-sharing, as it was the case for inferring pair-sharing, precision losses are limited, while useful efficiency gains are obtained. At the limit, the clique-set representation allowed analyzing some programs that exceeded memory capacity using classical sharing representations.Comment: 15 pages, 0 figure

    Non-Strict Independence-Based Program Parallelization Using Sharing and Freeness Information.

    Get PDF
    The current ubiquity of multi-core processors has brought renewed interest in program parallelization. Logic programs allow studying the parallelization of programs with complex, dynamic data structures with (declarative) pointers in a comparatively simple semantic setting. In this context, automatic parallelizers which exploit and-parallelism rely on notions of independence in order to ensure certain efficiency properties. “Non-strict” independence is a more relaxed notion than the traditional notion of “strict” independence which still ensures the relevant efficiency properties and can allow considerable more parallelism. Non-strict independence cannot be determined solely at run-time (“a priori”) and thus global analysis is a requirement. However, extracting non-strict independence information from available analyses and domains is non-trivial. This paper provides on one hand an extended presentation of our classic techniques for compile-time detection of non-strict independence based on extracting information from (abstract interpretation-based) analyses using the now well understood and popular Sharing + Freeness domain. This includes algorithms for combined compile-time/run-time detection which involve special run-time checks for this type of parallelism. In addition, we propose herein novel annotation (parallelization) algorithms, URLP and CRLP, which are specially suited to non-strict independence. We also propose new ways of using the Sharing + Freeness information to optimize how the run-time environments of goals are kept apart during parallel execution. Finally, we also describe the implementation of these techniques in our parallelizing compiler and recall some early performance results. We provide as well an extended description of our pictorial representation of sharing and freeness information

    Optimality in Goal-Dependent Analysis of Sharing

    Full text link
    We face the problems of correctness, optimality and precision for the static analysis of logic programs, using the theory of abstract interpretation. We propose a framework with a denotational, goal-dependent semantics equipped with two unification operators for forward unification (calling a procedure) and backward unification (returning from a procedure). The latter is implemented through a matching operation. Our proposal clarifies and unifies many different frameworks and ideas on static analysis of logic programming in a single, formal setting. On the abstract side, we focus on the domain Sharing by Jacobs and Langen and provide the best correct approximation of all the primitive semantic operators, namely, projection, renaming, forward and backward unification. We show that the abstract unification operators are strictly more precise than those in the literature defined over the same abstract domain. In some cases, our operators are more precise than those developed for more complex domains involving linearity and freeness. To appear in Theory and Practice of Logic Programming (TPLP

    Computer Architectures to Close the Loop in Real-time Optimization

    Get PDF
    © 2015 IEEE.Many modern control, automation, signal processing and machine learning applications rely on solving a sequence of optimization problems, which are updated with measurements of a real system that evolves in time. The solutions of each of these optimization problems are then used to make decisions, which may be followed by changing some parameters of the physical system, thereby resulting in a feedback loop between the computing and the physical system. Real-time optimization is not the same as fast optimization, due to the fact that the computation is affected by an uncertain system that evolves in time. The suitability of a design should therefore not be judged from the optimality of a single optimization problem, but based on the evolution of the entire cyber-physical system. The algorithms and hardware used for solving a single optimization problem in the office might therefore be far from ideal when solving a sequence of real-time optimization problems. Instead of there being a single, optimal design, one has to trade-off a number of objectives, including performance, robustness, energy usage, size and cost. We therefore provide here a tutorial introduction to some of the questions and implementation issues that arise in real-time optimization applications. We will concentrate on some of the decisions that have to be made when designing the computing architecture and algorithm and argue that the choice of one informs the other

    Advanced software techniques for space shuttle data management systems Final report

    Get PDF
    Airborne/spaceborn computer design and techniques for space shuttle data management system

    Effectiveness of abstract interpretation in automatic parallelization: a case study in logic programming

    Get PDF
    We report on a detailed study of the application and effectiveness of program analysis based on abstract interpretation to automatic program parallelization. We study the case of parallelizing logic programs using the notion of strict independence. We first propose and prove correct a methodology for the application in the parallelization task of the information inferred by abstract interpretation, using a parametric domain. The methodology is generic in the sense of allowing the use of different analysis domains. A number of well-known approximation domains are then studied and the transformation into the parametric domain defined. The transformation directly illustrates the relevance and applicability of each abstract domain for the application. Both local and global analyzers are then built using these domains and embedded in a complete parallelizing compiler. Then, the performance of the domains in this context is assessed through a number of experiments. A comparatively wide range of aspects is studied, from the resources needed by the analyzers in terms of time and memory to the actual benefits obtained from the information inferred. Such benefits are evaluated both in terms of the characteristics of the parallelized code and of the actual speedups obtained from it. The results show that data flow analysis plays an important role in achieving efficient parallelizations, and that the cost of such analysis can be reasonable even for quite sophisticated abstract domains. Furthermore, the results also offer significant insight into the characteristics of the domains, the demands of the application, and the trade-offs involved
    • …
    corecore