586 research outputs found

    Corrective Gradient Refinement for Mobile Robot Localization

    Get PDF
    Particle filters for mobile robot localization must balance computational requirements and accuracy of localization. Increasing the number of particles in a particle filter improves accuracy, but also increases the computational requirements. Hence, we investigate a different paradigm to better utilize particles than to increase their numbers. To this end, we introduce the Corrective Gradient Refinement (CGR) algorithm that uses the state space gradients of the observation model to improve accuracy while maintaining low computational requirements. We develop an observation model for mobile robot localization using point cloud sensors (LIDAR and depth cameras) with vector maps. This observation model is then used to analytically compute the state space gradients necessary for CGR. We show experimentally that the resulting complete localization algorithm is more accurate than the Sampling/Importance Resampling Monte Carlo Localization algorithm, while requiring fewer particles

    Multi-Sensor Mobile Robot Localization For Diverse Environments

    Get PDF
    Mobile robot localization with different sensors and algorithms is a widely studied problem, and there have been many approaches proposed, with considerable degrees of success. However, every sensor and algorithm has limitations, due to which we believe no single localization algorithm can be “perfect,” or universally applicable to all situations. Laser rangefinders are commonly used for localization, and state-of-theart algorithms are capable of achieving sub-centimeter accuracy in environments with features observable by laser rangefinders. Unfortunately, in large scale environments, there are bound to be areas devoid of features visible by a laser rangefinder, like open atria or corridors with glass walls. In such situations, the error in localization estimates using laser rangefinders could grow in an unbounded manner. Localization algorithms that use depth cameras, like the Microsoft Kinect sensor, have similar characteristics. WiFi signal strength based algorithms, on the other hand, are applicable anywhere there is dense WiFi coverage, and have bounded errors. Although the minimum error of WiFi based localization may be greater than that of laser rangefinder or depth camera based localization, the maximum error of WiFi based localization is bounded and less than that of the other algorithms. Hence, in our work, we analyze the strengths of localization using all three sensors - using a laser rangefinder, a depth camera, and using WiFi. We identify sensors that are most accurate at localization for different locations on the map. The mobile robot could then, for example, rely on WiFi localization more in open areas or areas with glass walls, and laser rangefinder and depth camera based localization in corridor and office environments

    Implicit sampling for path integral control, Monte Carlo localization, and SLAM

    Get PDF
    The applicability and usefulness of implicit sampling in stochastic optimal control, stochastic localization, and simultaneous localization and mapping (SLAM), is explored; implicit sampling is a recently-developed variationally-enhanced sampling method. The theory is illustrated with examples, and it is found that implicit sampling is significantly more efficient than current Monte Carlo methods in test problems for all three applications

    Kullback-Leibler divergence-based differential eEvolution Markov chain filter for global localization of mobile robots

    Get PDF
    One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot's pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area.The research leading to these results has received funding from the RoboCity2030-III-CM project (RobĂłtica aplicada a la mejora de la calidad de vida de los ciudadanos, fase III; S2013/MIT-2748),funded by Programas de Actividades I+Den la Comunidad de Madrid and cofunded by the Structural Funds of the EU

    Differential evolution Markov chain filter for global localization

    Get PDF
    A key challenge for an autonomous mobile robot is to estimate its location according to the available information. A particular aspect of this task is the global localization problem. In our previous work, we developed an algorithm based on the Differential Evolution method that solves this problem in 2D and 3D environments. The robot’s pose is represented by a set of possible location estimates weighted by a fitness function. The Markov Chain Monte Carlo algorithms have been successfully applied to multiple fields such as econometrics or computing science. It has been demonstrated that they can be combined with the Differential Evolution method to solve efficiently many optimization problems. In this work, we have combined both approaches to develop a global localization filter. The algorithm performance has been tested in simulated and real maps. The population requirements have been reduced when compared to the previous version.The research leading to these results has received funding from the RoboCity2030-III-CM project (Robotica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU.Publicad

    Using the Jensen-Shannon, density power, and Itakura-Saito divergences to implement an evolutionary-based global localization filter for mobile robots

    Get PDF
    One of the most demanding skills for a mobile robot is to be intelligent enough to know its own location. The global localization problem consists of obtaining the robot's pose (position and orientation) in a known map if the initial location is unknown. This task is addressed applying evolutionary computation concepts (Differential Evolution). In the current approach, the distances obtained from the laser sensors are combined with the predicted scan (in the known map) from possible locations to implement a cost function that is optimized by an evolutionary filter. The laser beams (sensor information) are modeled using a combination of probability distributions to implement a non-symmetric fitness function. The main contribution of this paper is to apply the probabilistic approach to design three different cost functions based on known divergences (Jensen-Shannon, Itakura-Saito, and density power). The three metrics have been tested in different experiments and the localization module performance is exceptional in regions with occlusions caused by different obstacles. This fact validates that the non-symmetric probabilistic approach is a suitable technique to be applied to multiple metrics.This work was supported by the Competitive Improvement of Drilling and Blasting Cycle in Mining and Underground-Works through New Techniques of Engineering, Explosives, Prototypes, and Advanced Tools, which is a Research and Development project undertaken by the following companies: Obras Subterr a neas, MaxamCorp Holding, Putzmeister Iberica, Subterra Ingenieria, Expace On Boards Systems, Dacartec Servicios Informaticos, and Cepasa Ensayos Geotecnicos

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    Integrating Vision and Physical Interaction for Discovery, Segmentation and Grasping of Unknown Objects

    Get PDF
    In dieser Arbeit werden Verfahren der Bildverarbeitung und die Fähigkeit humanoider Roboter, mit ihrer Umgebung physisch zu interagieren, in engem Zusammenspiel eingesetzt, um unbekannte Objekte zu identifizieren, sie vom Hintergrund und anderen Objekten zu trennen, und letztendlich zu greifen. Im Verlauf dieser interaktiven Exploration werden außerdem Eigenschaften des Objektes wie etwa sein Aussehen und seine Form ermittelt
    • …
    corecore