419 research outputs found

    Short-Pulsed Wavepacket Propagation in Ray-Chaotic Enclosures

    Full text link
    Wave propagation in ray-chaotic scenarios, characterized by exponential sensitivity to ray-launching conditions, is a topic of significant interest, with deep phenomenological implications and important applications, ranging from optical components and devices to time-reversal focusing/sensing schemes. Against a background of available results that are largely focused on the time-harmonic regime, we deal here with short-pulsed wavepacket propagation in a ray-chaotic enclosure. For this regime, we propose a rigorous analytical framework based on a short-pulsed random-plane-wave statistical representation, and check its predictions against the results from finite-difference-time-domain numerical simulations.Comment: 11 pages, 11 figures; minor modifications in the tex

    Evaluation and Verification of Bottom Acoustic Reverberation Statistics Predicted by the Point Scattering Model

    Get PDF
    The point scatteringmodel offers a parameterization of the reverberation probability density function (pdf) in terms of the coefficient of excess (kurtosis) and a coherent component represented by a harmonic process with random phase. In this paper the potential utility of this parametrization is investigated in the context of seafloor characterization. The problem of separating out the effect of each parameter is discussed. Computer simulations are used to verify model predictions on the reverberation quadrature, envelope, and phase pdf. As part of the verification study, the scatterer density was determined from the kurtosis of the reverberation quadrature pdf. A statistical analysis of this procedure points to reduced estimate accuracy with decreasing kurtosis. Additional computer simulations show that the chosen pdf family, developed under the assumption of a Poissonscatterer distribution, is flexible enough to fit reverberation data generated by non‐Poisson scatterer distributions exhibiting a degree of clustering or regularity. A computer experiment demonstrates how this parametrization can be used in conjunction with a simple sonar geometry to generate acoustic signatures for seafloor classification. In addition, real reverberation data collected by a Sea Beam sonar system in two different seafloor areas are interpreted according to the chosen parametrization

    Testing the nature of dark compact objects: a status report

    Full text link
    Very compact objects probe extreme gravitational fields and may be the key to understand outstanding puzzles in fundamental physics. These include the nature of dark matter, the fate of spacetime singularities, or the loss of unitarity in Hawking evaporation. The standard astrophysical description of collapsing objects tells us that massive, dark and compact objects are black holes. Any observation suggesting otherwise would be an indication of beyond-the-standard-model physics. Null results strengthen and quantify the Kerr black hole paradigm. The advent of gravitational-wave astronomy and precise measurements with very long baseline interferometry allow one to finally probe into such foundational issues. We overview the physics of exotic dark compact objects and their observational status, including the observational evidence for black holes with current and future experiments.Comment: 76 pages + references. Invited review article for Living Reviews in Relativity. v3: Overall improvements and references added, a few typos corrected. Version to appear in LR

    Predicting room acoustical behavior with the ODEON computer model

    Get PDF

    Temporal integration of loudness as a function of level

    Get PDF
    corecore