58,573 research outputs found

    Facial expressions emotional recognition with NAO robot

    Get PDF
    Human-robot interaction research is diverse and covers a wide range of topics. All aspects of human factors and robotics are within the purview of HRI research so far as they provide insight into how to improve our understanding in developing effective tools, protocols, and systems to enhance HRI. For example, a significant research effort is being devoted to designing human-robot interface that makes it easier for the people to interact with robots. HRI is an extremely active research field where new and important work is being published at a fast pace. It is crucial for humanoid robots to understand the emotions of people for efficient human robot interaction. Initially, the robot detects human face by Viola- Jones technique. Later, facial distance measurements are accumulated by geometric based facial distance measurement method. Then facial action coding system is used to detect movements of measured facial points. Finally, measured facial movements are evaluated to get instant emotional properties of human face in this research; it has been specifically applied to NAO humanoid robot

    An Empirical-Mathematical Approach for Calibration and Fitting Cell-Electrode Electrical Models in Bioimpedance Tests

    Get PDF
    This paper proposes a new yet efficient method allowing a significant improvement in the on-line analysis of biological cell growing and evolution. The procedure is based on an empirical-mathematical approach for calibration and fitting of any cell-electrode electrical model. It is valid and can be extrapolated for any type of cellular line used in electrical cell-substrate impedance spectroscopy (ECIS) tests. Parameters of the bioimpedance model, acquired from ECIS experiments, vary for each cell line, which makes obtaining results difficult and—to some extent-renders them inaccurate. We propose a fitting method based on the cell line initial characterization,and carry out subsequent experiments with the same line to approach the percentage of well filling and the cell density (or cell number in the well). To perform our calibration technique, the so-called oscillation-based test (OBT) approach is employed for each cell density. Calibration results are validated by performing other experiments with different concentrations on the same cell line with the same measurement technique. Accordingly, a bioimpedance electrical model of each cell line is determined, which is valid for any further experiment and leading to a more precise electrical model of the electrode-cell system. Furthermore, the model parameters calculated can be also used by any other measurement techniques. Promising experimental outcomes for three different cell-lines have been achieved, supporting the usefulness of this technique

    SLM-based Digital Adaptive Coronagraphy: Current Status and Capabilities

    Full text link
    Active coronagraphy is deemed to play a key role for the next generation of high-contrast instruments, notably in order to deal with large segmented mirrors that might exhibit time-dependent pupil merit function, caused by missing or defective segments. To this purpose, we recently introduced a new technological framework called digital adaptive coronagraphy (DAC), making use of liquid-crystal spatial light modulators (SLMs) display panels operating as active focal-plane phase mask coronagraphs. Here, we first review the latest contrast performance, measured in laboratory conditions with monochromatic visible light, and describe a few potential pathways to improve SLM coronagraphic nulling in the future. We then unveil a few unique capabilities of SLM-based DAC that were recently, or are currently in the process of being, demonstrated in our laboratory, including NCPA wavefront sensing, aperture-matched adaptive phase masks, coronagraphic nulling of multiple star systems, and coherent differential imaging (CDI).Comment: 14 pages, 9 figures, to appear in Proceedings of the SPIE, paper 10706-9
    corecore