22 research outputs found

    Approaches to improve mixing in compression ignition engines

    Get PDF
    This thesis presents three approaches to suppress soot emissions in compression-ignition (CI) engines. First, a fuel chemistry approach is proposed. A particular class of fuels - cyclic oxygenates - is identified which is capable of significantly reducing engine-out soot emissions. By means of experiments in "closed" and optical engines, as well as on an industrial burner, two possible mechanisms are identified that could account for the observed reduction in soot: a) an extended ignition delay (ID) and b) a longer flame lift-off length (FLoL). Further analysis of the available data suggests that both mechanisms are related to the inherently low reactivity of the fuel class in question. These findings are largely in line with data found in literature. In the second approach, it is attempted to reduce soot by adopting an alternative combustion concept: early direct injection premixed charge compression ignition (EDI PCCI). In this concept, fuel is injected relatively early in the compression stroke instead of conventional, close to top-dead-center (TDC), injection schemes. While the goal of soot reduction can indeed be achieved via this approach, an important draw-back must be addressed before this concept can be considered practically viable. Due to the fact that combustion chamber temperature and pressure is relatively low early in the compression stroke, fuel impingement against the cylinder liner (wall-wetting) often occurs. Consequently, high levels of unburned hydrocarbons (UHC), oil dilution and poor efficiency are observed. Several strategies, combining a limited engine modification with dedicated air management and fueling settings, are investigated to tackle this drawback. All of these strategies, and especially their combination, resulted in significantly lower UHC emissions and improved fuel economy. Although UHC emissions are typically a tell-tale sign of wall-wetting, as mentioned earlier, the relation between these two has long been hypothetical. Therefore, computational fluid dynamics (CFD) calculations of the injection process are performed to confirm whether or not liquid fuel impingement on the combustion chamber walls is indeed reduced as a result of the aforementioned UHC reduction strategies. Combined model and experimental results indicate that, for most strategies, the measured hydrocarbon emissions and predicted spray impingement are well correlated for a conventional DI injector nozzle, supporting the earlier assumption that wall-wetting is responsible for high hydrocarbon emissions in the investigated early injection timing approach. Lastly, in the third approach, a new injector nozzle design is proposed to improve the mixing process; again with the aim of soot abatement. In conventional nozzles, fuel is injected through 5-10 holes with nominal diameters of 100-200 micrometer. From both literature and in-house experiments it is known that mixing can be improved by reducing the nozzle diameter. Unfortunately, in order to preserve the overall flow rate, the number of required holes quadratically increases with a reduction in hole diameter. Alternatively, it is proposed to not drill the holes, but to use a porous medium instead. The utilized medium is a sintered metal permeated by an interconnected network of (continuous) pores with nominal diameters of 10 micrometer. This material is machined into a nozzle like shape and subjected to atmospheric injection tests as well as to experiments in the Eindhoven High Pressure Cell. Macroscopic experimental data (e.g. shorter ignition delay, larger spray volume) suggests that mixing is indeed improved. However, more research is required, preferably in a(n) (optical) engine, to investigate the impact on (soot) emissions and overall engine performance. In addition, the issues of durability and fouling still have to be addressed

    Super-resolution spatial, temporal and functional characterisation of voltage-gated calcium channels involved in exocytosis

    Get PDF
    The process of information transfer between neurons or endocrine cells is one of the most important, intricate and temporally precise processes in the body. Exocytosis, which is central to the process of excitation-­‐secretion coupling, is triggered by calcium signalling through voltage-­‐gated calcium channels. Super-­‐resolution imaging offers the possibility to fully understand the spatial relationship between the SNARE proteins involved in exocytosis, vesicles and the associated voltage-­‐gated calcium channels. In this thesis the focus is on exploring the trigger for exocytosis, specifically the spatial and functional role that voltage-­‐gated calcium channels play in this process. Super-­‐ resolution imaging techniques have been applied to measure the interaction between Cav2.2 calcium channels and the syntaxin1a SNARE protein, where binding was found to affect the overall channel distribution. A novel method of caged dye conjugated ω-­‐ conotoxin GVIA binding was developed for live cell single molecule imaging of Cav2.2 calcium channels. An innovative approach to analyse channel functionality and the distribution of calcium events at the plasma membrane was developed to create a temporal-­‐spatial map of calcium activity across the cell. These developments, combined with newly developed techniques in optical patching and simultaneous calcium and vesicle imaging reveal the functional relationship of voltage-­‐gated calcium channel and exocytosis at unprecedented spatial and temporal scales

    Optical In-Process Measurement Systems

    Get PDF
    Information is key, which means that measurements are key. For this reason, this book provides unique insight into state-of-the-art research works regarding optical measurement systems. Optical systems are fast and precise, and the ongoing challenge is to enable optical principles for in-process measurements. Presented within this book is a selection of promising optical measurement approaches for real-world applications

    Current Air Quality Issues

    Get PDF
    Air pollution is thus far one of the key environmental issues in urban areas. Comprehensive air quality plans are required to manage air pollution for a particular area. Consequently, air should be continuously sampled, monitored, and modeled to examine different action plans. Reviews and research papers describe air pollution in five main contexts: Monitoring, Modeling, Risk Assessment, Health, and Indoor Air Pollution. The book is recommended to experts interested in health and air pollution issues

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Image Color Correction, Enhancement, and Editing

    Get PDF
    This thesis presents methods and approaches to image color correction, color enhancement, and color editing. To begin, we study the color correction problem from the standpoint of the camera's image signal processor (ISP). A camera's ISP is hardware that applies a series of in-camera image processing and color manipulation steps, many of which are nonlinear in nature, to render the initial sensor image to its final photo-finished representation saved in the 8-bit standard RGB (sRGB) color space. As white balance (WB) is one of the major procedures applied by the ISP for color correction, this thesis presents two different methods for ISP white balancing. Afterwards, we discuss another scenario of correcting and editing image colors, where we present a set of methods to correct and edit WB settings for images that have been improperly white-balanced by the ISP. Then, we explore another factor that has a significant impact on the quality of camera-rendered colors, in which we outline two different methods to correct exposure errors in camera-rendered images. Lastly, we discuss post-capture auto color editing and manipulation. In particular, we propose auto image recoloring methods to generate different realistic versions of the same camera-rendered image with new colors. Through extensive evaluations, we demonstrate that our methods provide superior solutions compared to existing alternatives targeting color correction, color enhancement, and color editing

    Biotechnology

    Get PDF
    Biotechnological problems of man machine systems required for long duration space flight

    A thin monocrystalline diaphragm pressure sensor using silicon-on-insulator technology.

    Get PDF
    The sensors market is huge and growing annually, of this a large sector is pressure sensors. With increasing demands on performance there remains a need for ultraminiature, high performance pressure sensors, particularly for medicai applications. To address this a novel capacitive pressure sensor consisting of an array of parallel connected diaphragms has been designed and fabricated from SIMOX substrates. The benefits of this include single crystal silicon diaphragms, small, well controlled dimensions, single sided processing and the opportunity for electronics integration. Theoretical modelling of this structure predicts a high sensitivity and low stress device with opportunities for scaling to suit alternative applications. A novel, process technology was developed to achieve the required structure with the inclusion of procedures to address the specific issues relating to the SIMOX material. The sensor was fully characterised and the results demonstrated high performance compared with similar reported devices. Alternative structures such as cantilevers, bridges and resonators were fabricated as a demonstrative tool to show the feasibility of this technology in a wider field of applications
    corecore