206 research outputs found

    Article Segmentation in Digitised Newspapers

    Get PDF
    Digitisation projects preserve and make available vast quantities of historical text. Among these, newspapers are an invaluable resource for the study of human culture and history. Article segmentation identifies each region in a digitised newspaper page that contains an article. Digital humanities, information retrieval (IR), and natural language processing (NLP) applications over digitised archives improve access to text and allow automatic information extraction. The lack of article segmentation impedes these applications. We contribute a thorough review of the existing approaches to article segmentation. Our analysis reveals divergent interpretations of the task, and inconsistent and often ambiguously defined evaluation metrics, making comparisons between systems challenging. We solve these issues by contributing a detailed task definition that examines the nuances and intricacies of article segmentation that are not immediately apparent. We provide practical guidelines on handling borderline cases and devise a new evaluation framework that allows insightful comparison of existing and future approaches. Our review also reveals that the lack of large datasets hinders meaningful evaluation and limits machine learning approaches. We solve these problems by contributing a distant supervision method for generating large datasets for article segmentation. We manually annotate a portion of our dataset and show that our method produces article segmentations over characters nearly as well as costly human annotators. We reimplement the seminal textual approach to article segmentation (Aiello and Pegoretti, 2006) and show that it does not generalise well when evaluated on a large dataset. We contribute a framework for textual article segmentation that divides the task into two distinct phases: block representation and clustering. We propose several techniques for block representation and contribute a novel highly-compressed semantic representation called similarity embeddings. We evaluate and compare different clustering techniques, and innovatively apply label propagation (Zhu and Ghahramani, 2002) to spread headline labels to similar blocks. Our similarity embeddings and label propagation approach substantially outperforms Aiello and Pegoretti but still falls short of human performance. Exploring visual approaches to article segmentation, we reimplement and analyse the state-of-the-art Bansal et al. (2014) approach. We contribute an innovative 2D Markov model approach that captures reading order dependencies and reduces the structured labelling problem to a Markov chain that we decode with Viterbi (1967). Our approach substantially outperforms Bansal et al., achieves accuracy as good as human annotators, and establishes a new state of the art in article segmentation. Our task definition, evaluation framework, and distant supervision dataset will encourage progress in the task of article segmentation. Our state-of-the-art textual and visual approaches will allow sophisticated IR and NLP applications over digitised newspaper archives, supporting research in the digital humanities

    Advanced document data extraction techniques to improve supply chain performance

    Get PDF
    In this thesis, a novel machine learning technique to extract text-based information from scanned images has been developed. This information extraction is performed in the context of scanned invoices and bills used in financial transactions. These financial transactions contain a considerable amount of data that must be extracted, refined, and stored digitally before it can be used for analysis. Converting this data into a digital format is often a time-consuming process. Automation and data optimisation show promise as methods for reducing the time required and the cost of Supply Chain Management (SCM) processes, especially Supplier Invoice Management (SIM), Financial Supply Chain Management (FSCM) and Supply Chain procurement processes. This thesis uses a cross-disciplinary approach involving Computer Science and Operational Management to explore the benefit of automated invoice data extraction in business and its impact on SCM. The study adopts a multimethod approach based on empirical research, surveys, and interviews performed on selected companies.The expert system developed in this thesis focuses on two distinct areas of research: Text/Object Detection and Text Extraction. For Text/Object Detection, the Faster R-CNN model was analysed. While this model yields outstanding results in terms of object detection, it is limited by poor performance when image quality is low. The Generative Adversarial Network (GAN) model is proposed in response to this limitation. The GAN model is a generator network that is implemented with the help of the Faster R-CNN model and a discriminator that relies on PatchGAN. The output of the GAN model is text data with bonding boxes. For text extraction from the bounding box, a novel data extraction framework consisting of various processes including XML processing in case of existing OCR engine, bounding box pre-processing, text clean up, OCR error correction, spell check, type check, pattern-based matching, and finally, a learning mechanism for automatizing future data extraction was designed. Whichever fields the system can extract successfully are provided in key-value format.The efficiency of the proposed system was validated using existing datasets such as SROIE and VATI. Real-time data was validated using invoices that were collected by two companies that provide invoice automation services in various countries. Currently, these scanned invoices are sent to an OCR system such as OmniPage, Tesseract, or ABBYY FRE to extract text blocks and later, a rule-based engine is used to extract relevant data. While the system’s methodology is robust, the companies surveyed were not satisfied with its accuracy. Thus, they sought out new, optimized solutions. To confirm the results, the engines were used to return XML-based files with text and metadata identified. The output XML data was then fed into this new system for information extraction. This system uses the existing OCR engine and a novel, self-adaptive, learning-based OCR engine. This new engine is based on the GAN model for better text identification. Experiments were conducted on various invoice formats to further test and refine its extraction capabilities. For cost optimisation and the analysis of spend classification, additional data were provided by another company in London that holds expertise in reducing their clients' procurement costs. This data was fed into our system to get a deeper level of spend classification and categorisation. This helped the company to reduce its reliance on human effort and allowed for greater efficiency in comparison with the process of performing similar tasks manually using excel sheets and Business Intelligence (BI) tools.The intention behind the development of this novel methodology was twofold. First, to test and develop a novel solution that does not depend on any specific OCR technology. Second, to increase the information extraction accuracy factor over that of existing methodologies. Finally, it evaluates the real-world need for the system and the impact it would have on SCM. This newly developed method is generic and can extract text from any given invoice, making it a valuable tool for optimizing SCM. In addition, the system uses a template-matching approach to ensure the quality of the extracted information

    Recognition of Characters from Streaming Videos

    Get PDF
    Non

    Rapid Resource Transfer for Multilingual Natural Language Processing

    Get PDF
    Until recently the focus of the Natural Language Processing (NLP) community has been on a handful of mostly European languages. However, the rapid changes taking place in the economic and political climate of the world precipitate a similar change to the relative importance given to various languages. The importance of rapidly acquiring NLP resources and computational capabilities in new languages is widely accepted. Statistical NLP models have a distinct advantage over rule-based methods in achieving this goal since they require far less manual labor. However, statistical methods require two fundamental resources for training: (1) online corpora (2) manual annotations. Creating these two resources can be as difficult as porting rule-based methods. This thesis demonstrates the feasibility of acquiring both corpora and annotations by exploiting existing resources for well-studied languages. Basic resources for new languages can be acquired in a rapid and cost-effective manner by utilizing existing resources cross-lingually. Currently, the most viable method of obtaining online corpora is converting existing printed text into electronic form using Optical Character Recognition (OCR). Unfortunately, a language that lacks online corpora most likely lacks OCR as well. We tackle this problem by taking an existing OCR system that was desgined for a specific language and using that OCR system for a language with a similar script. We present a generative OCR model that allows us to post-process output from a non-native OCR system to achieve accuracy close to, or better than, a native one. Furthermore, we show that the performance of a native or trained OCR system can be improved by the same method. Next, we demonstrate cross-utilization of annotations on treebanks. We present an algorithm that projects dependency trees across parallel corpora. We also show that a reasonable quality treebank can be generated by combining projection with a small amount of language-specific post-processing. The projected treebank allows us to train a parser that performs comparably to a parser trained on manually generated data

    Combining Visual and Textual Features for Semantic Segmentation of Historical Newspapers

    Full text link
    The massive amounts of digitized historical documents acquired over the last decades naturally lend themselves to automatic processing and exploration. Research work seeking to automatically process facsimiles and extract information thereby are multiplying with, as a first essential step, document layout analysis. If the identification and categorization of segments of interest in document images have seen significant progress over the last years thanks to deep learning techniques, many challenges remain with, among others, the use of finer-grained segmentation typologies and the consideration of complex, heterogeneous documents such as historical newspapers. Besides, most approaches consider visual features only, ignoring textual signal. In this context, we introduce a multimodal approach for the semantic segmentation of historical newspapers that combines visual and textual features. Based on a series of experiments on diachronic Swiss and Luxembourgish newspapers, we investigate, among others, the predictive power of visual and textual features and their capacity to generalize across time and sources. Results show consistent improvement of multimodal models in comparison to a strong visual baseline, as well as better robustness to high material variance

    Computational approaches to semantic change (Volume 6)

    Get PDF
    Semantic change — how the meanings of words change over time — has preoccupied scholars since well before modern linguistics emerged in the late 19th and early 20th century, ushering in a new methodological turn in the study of language change. Compared to changes in sound and grammar, semantic change is the least understood. Ever since, the study of semantic change has progressed steadily, accumulating a vast store of knowledge for over a century, encompassing many languages and language families. Historical linguists also early on realized the potential of computers as research tools, with papers at the very first international conferences in computational linguistics in the 1960s. Such computational studies still tended to be small-scale, method-oriented, and qualitative. However, recent years have witnessed a sea-change in this regard. Big-data empirical quantitative investigations are now coming to the forefront, enabled by enormous advances in storage capability and processing power. Diachronic corpora have grown beyond imagination, defying exploration by traditional manual qualitative methods, and language technology has become increasingly data-driven and semantics-oriented. These developments present a golden opportunity for the empirical study of semantic change over both long and short time spans

    Resource Generation from Structured Documents for Low-density Languages

    Get PDF
    The availability and use of electronic resources for both manual and automated language related processing has increased tremendously in recent years. Nevertheless, many resources still exist only in printed form, restricting their availability and use. This especially holds true in low density languages or languages with limited electronic resources. For these documents, automated conversion into electronic resources is highly desirable. This thesis focuses on the semi-automated conversion of printed structured documents (dictionaries in particular) to usable electronic representations. In the first part we present an entry tagging system that recognizes, parses, and tags the entries of a printed dictionary to reproduce the representation. The system uses the consistent layout and structure of the dictionaries, and the features that impose this structure, to capture and recover lexicographic information. We accomplish this by adapting two methods: rule-based and HMM-based. The system is designed to produce results quickly with minimal human assistance and reasonable accuracy. The use of an adaptive transformation-based learning as a post-processor at two points in the system yields significant improvements, even with an extremely small amount of user provided training data. The second part of this thesis presents Morphology Induction from Noisy Data (MIND), a natural language morphology discovery framework that operates on information from limited, noisy data obtained from the conversion process. To use the resulting resources effectively, however, users must be able to search for them using the root form of morphologically deformed variant found in the text. Stemming and data driven methods are not suitable when data are sparse. The approach is based on the novel application of string searching algorithms. The evaluations show that MIND can segment words into roots and affixes from the noisy, limited data contained in a dictionary, and it can extract prefixes, suffixes, circumfixes, and infixes. MIND can also identify morphophonemic changes, i.e., phonemic variations between allomorphs of a morpheme, specifically point-of-affixation stem changes. This, in turn, allows non-native speakers to perform multilingual tasks for applications where response must be rapid, and they have limited knowledge. In addition, this analysis can feed other natural language processing tools requiring lexicons

    Content Recognition and Context Modeling for Document Analysis and Retrieval

    Get PDF
    The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval. Meanwhile, the processing of documents with unconstrained layouts and complex formatting often requires effective leveraging of broad contextual knowledge. In this dissertation, we first present a novel approach for document image content categorization, using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant local shape feature that is generic enough to be detected repeatably and is segmentation free. A concise, structurally indexed shape lexicon is learned by clustering and partitioning feature types through graph cuts. Our idea finds successful application in several challenging tasks, including content recognition of diverse web images and language identification on documents composed of mixed machine printed text and handwriting. Second, we address two fundamental problems in signature-based document image retrieval. Facing continually increasing volumes of documents, detecting and recognizing unique, evidentiary visual entities (\eg, signatures and logos) provides a practical and reliable supplement to the OCR recognition of printed text. We propose a novel multi-scale framework to detect and segment signatures jointly from document images, based on the structural saliency under a signature production model. We formulate the problem of signature retrieval in the unconstrained setting of geometry-invariant deformable shape matching and demonstrate state-of-the-art performance in signature matching and verification. Third, we present a model-based approach for extracting relevant named entities from unstructured documents. In a wide range of applications that require structured information from diverse, unstructured document images, processing OCR text does not give satisfactory results due to the absence of linguistic context. Our approach enables learning of inference rules collectively based on contextual information from both page layout and text features. Finally, we demonstrate the importance of mining general web user behavior data for improving document ranking and other web search experience. The context of web user activities reveals their preferences and intents, and we emphasize the analysis of individual user sessions for creating aggregate models. We introduce a novel algorithm for estimating web page and web site importance, and discuss its theoretical foundation based on an intentional surfer model. We demonstrate that our approach significantly improves large-scale document retrieval performance

    The Taming of the Shrew - non-standard text processing in the Digital Humanities

    Get PDF
    Natural language processing (NLP) has focused on the automatic processing of newspaper texts for many years. With the growing importance of text analysis in various areas such as spoken language understanding, social media processing and the interpretation of text material from the humanities, techniques and methodologies have to be reviewed and redefined since so called non-standard texts pose challenges on the lexical and syntactic level especially for machine-learning-based approaches. Automatic processing tools developed on the basis of newspaper texts show a decreased performance for texts with divergent characteristics. Digital Humanities (DH) as a field that has risen to prominence in the last decades, holds a variety of examples for this kind of texts. Thus, the computational analysis of the relationships of Shakespeare’s dramatic characters requires the adjustment of processing tools to English texts from the 16th-century in dramatic form. Likewise, the investigation of narrative perspective in Goethe’s ballads calls for methods that can handle German verse from the 18th century. In this dissertation, we put forward a methodology for NLP in a DH environment. We investigate how an interdisciplinary context in combination with specific goals within projects influences the general NLP approach. We suggest thoughtful collaboration and increased attention to the easy applicability of resulting tools as a solution for differences in the store of knowledge between project partners. Projects in DH are not only constituted by the automatic processing of texts but are usually framed by the investigation of a research question from the humanities. As a consequence, time limitations complicate the successful implementation of analysis techniques especially since the diversity of texts impairs the transferability and reusability of tools beyond a specific project. We answer to this with modular and thus easily adjustable project workflows and system architectures. Several instances serve as examples for our methodology on different levels. We discuss modular architectures that balance time-saving solutions and problem-specific implementations on the example of automatic postcorrection of the output text from an optical character recognition system. We address the problem of data diversity and low resource situations by investigating different approaches towards non-standard text processing. We examine two main techniques: text normalization and tool adjustment. Text normalization aims at the transformation of non-standard text in order to assimilate it to the standard whereas tool adjustment concentrates on the contrary direction of enabling tools to successfully handle a specific kind of text. We focus on the task of part-of-speech tagging to illustrate various approaches toward the processing of historical texts as an instance for non-standard texts. We discuss how the level of deviation from a standard form influences the performance of different methods. Our approaches shed light on the importance of data quality and quantity and emphasize the indispensability of annotations for effective machine learning. In addition, we highlight the advantages of problem-driven approaches where the purpose of a tool is clearly formulated through the research question. Another significant finding to emerge from this work is a summary of the experiences and increased knowledge through collaborative projects between computer scientists and humanists. We reflect on various aspects of the elaboration and formalization of research questions in the DH and assess the limitations and possibilities of the computational modeling of humanistic research questions. An emphasis is placed on the interplay of expert knowledge with respect to a subject of investigation and the implementation of tools for that purpose and the thereof resulting advantages such as the targeted improvement of digital methods through purposeful manual correction and error analysis. We show obstacles and chances and give prospects and directions for future development in this realm of interdisciplinary research
    • …
    corecore