6,348 research outputs found

    The Panchromatic High-Resolution Spectroscopic Survey of Local Group Star Clusters - I. General Data Reduction Procedures for the VLT/X-shooter UVB and VIS arm

    Get PDF
    Our dataset contains spectroscopic observations of 29 globular clusters in the Magellanic Clouds and the Milky Way performed with VLT/X-shooter. Here we present detailed data reduction procedures for the VLT/X-shooter UVB and VIS arm. These are not restricted to our particular dataset, but are generally applicable to different kinds of X-shooter data without major limitation on the astronomical object of interest. ESO's X-shooter pipeline (v1.5.0) performs well and reliably for the wavelength calibration and the associated rectification procedure, yet we find several weaknesses in the reduction cascade that are addressed with additional calibration steps, such as bad pixel interpolation, flat fielding, and slit illumination corrections. Furthermore, the instrumental PSF is analytically modeled and used to reconstruct flux losses at slit transit and for optimally extracting point sources. Regular observations of spectrophotometric standard stars allow us to detect instrumental variability, which needs to be understood if a reliable absolute flux calibration is desired. A cascade of additional custom calibration steps is presented that allows for an absolute flux calibration uncertainty of less than ten percent under virtually every observational setup provided that the signal-to-noise ratio is sufficiently high. The optimal extraction increases the signal-to-noise ratio typically by a factor of 1.5, while simultaneously correcting for resulting flux losses. The wavelength calibration is found to be accurate to an uncertainty level of approximately 0.02 Angstrom. We find that most of the X-shooter systematics can be reliably modeled and corrected for. This offers the possibility of comparing observations on different nights and with different telescope pointings and instrumental setups, thereby facilitating a robust statistical analysis of large datasets.Comment: 22 pages, 18 figures, Accepted for publication in Astronomy & Astrophysics; V2 contains a minor change in the abstract. We note that we did not test X-shooter pipeline versions 2.0 or later. V3 contains an updated referenc

    Flame: A Flexible Data Reduction Pipeline for Near-Infrared and Optical Spectroscopy

    Full text link
    We present flame, a pipeline for reducing spectroscopic observations obtained with multi-slit near-infrared and optical instruments. Because of its flexible design, flame can be easily applied to data obtained with a wide variety of spectrographs. The flexibility is due to a modular architecture, which allows changes and customizations to the pipeline, and relegates the instrument-specific parts to a single module. At the core of the data reduction is the transformation from observed pixel coordinates (x, y) to rectified coordinates (lambda, gamma). This transformation consists in the polynomial functions lambda(x,y) and gamma(x,y) that are derived from arc or sky emission lines and slit edge tracing, respectively. The use of 2D transformations allows one to wavelength calibrate and rectify the data using just one interpolation step. Furthermore, the gamma(x,y) transformation includes also the spatial misalignment between frames, which can be measured from a reference star observed simultaneously with the science targets. The misalignment can then be fully corrected during the rectification, without having to further resample the data. Sky subtraction can be performed via nodding and/or modeling of the sky spectrum; the combination of the two methods typically yields the best results. We illustrate the pipeline by showing examples of data reduction for a near-infrared instrument (LUCI at the Large Binocular Telescope) and an optical one (LRIS at the Keck telescope).Comment: 17 pages, 10 figures, published in MNRAS. The pipeline is available at https://github.com/siriobelli/flam

    Mechanisms for optical binding

    Get PDF
    The phenomenon of optical binding is now experimentally very well established. With a recognition of the facility to collect and organize particles held in an optical trap, the related term 'optical matter' has also been gaining currency, highlighting possibilities for a significant interplay between optically induced inter-particle forces and other interactions such as chemical bonding and dispersion forces. Optical binding itself has a variety of interpretations. With some of these explanations being more prominent than others, and their applicability to some extent depending on the nature of the particles involved, a listing of these has to include the following: collective scattering, laser-dressed Casimir forces, virtual photon coupling, optically induced dipole resonance, and plasmon resonance coupling. It is the purpose of this paper to review and to establish the extent of fundamental linkages between these theoretical descriptions, recognizing the value that each has in relating the phenomenon of optical binding to the broader context of other, closely related physical measurements

    The XMM-Newton serendipitous survey. VII. The third XMM-Newton serendipitous source catalogue

    Get PDF
    Thanks to the large collecting area (3 x ~1500 cm2^2 at 1.5 keV) and wide field of view (30' across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the detection of hundreds of X-ray sources, most of which are newly discovered. Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision, greater net sensitivity and the extraction of spectra and time series for fainter sources, with better signal-to-noise. Further, almost 50\% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre (XMM-SSC) to produce a much larger and better quality X-ray source catalogue. The XMM-SSC has developed a pipeline to reduce the XMM-Newton data automatically and using improved calibration a new catalogue version has been produced from XMM-Newton data made public by 2013 Dec. 31 (13 years of data). Manual screening ensures the highest data quality. This catalogue is known as 3XMM. In the latest release, 3XMM-DR5, there are 565962 X-ray detections comprising 396910 unique X-ray sources. For the 133000 brightest sources, spectra and lightcurves are provided. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. To identify the detections, a cross correlation with 228 catalogues is also provided for each X-ray detection. 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products, it is an excellent resource in which to find new and extreme objects.Comment: 23 pages, version accepted for publication in A&

    THz generation using a reflective stair-step echelon

    Full text link
    We present a novel method for THz generation in lithium niobate using a reflective stair-step echelon structure. The echelon produces a discretely tilted pulse front with less angular dispersion compared to a high groove-density grating. The THz output was characterized using both a 1-lens and 3-lens imaging system to set the tilt angle at room and cryogenic temperatures. Using broadband 800 nm pulses with a pulse energy of 0.95 mJ and a pulse duration of 70 fs (24 nm FWHM bandwidth, 39 fs transform limited width), we produced THz pulses with field strengths as high as 500 kV/cm and pulse energies as high as 3.1 μ\muJ. The highest conversion efficiency we obtained was 0.33%. In addition, we find that the echelon is easily implemented into an experimental setup for quick alignment and optimization.Comment: 19 pages, 4 figure

    Optical Rectification and Field Enhancement in a Plasmonic Nanogap

    Full text link
    Metal nanostructures act as powerful optical antennas[1, 2] because collective modes of the electron fluid in the metal are excited when light strikes the surface of the nanostructure. These excitations, known as plasmons, can have evanescent electromagnetic fields that are orders of magnitude larger than the incident electromagnetic field. The largest field enhancements often occur in nanogaps between plasmonically active nanostructures[3, 4], but it is extremely challenging to measure the fields in such gaps directly. These enhanced fields have applications in surface-enhanced spectroscopies[5-7], nonlinear optics[1, 8-10], and nanophotonics[11-15]. Here we show that nonlinear tunnelling conduction between gold electrodes separated by a subnanometre gap leads to optical rectification, producing a DC photocurrent when the gap is illuminated. Comparing this photocurrent with low frequency conduction measurements, we determine the optical frequency voltage across the tunnelling region of the nanogap, and also the enhancement of the electric field in the tunnelling region, as a function of gap size. The measured field enhancements exceed 1000, consistent with estimates from surface-enhanced Raman measurements[16-18]. Our results highlight the need for more realistic theoretical approaches that are able to model the electromagnetic response of metal nanostructures on scales ranging from the free space wavelength, λ\lambda, down to λ/1000\sim \lambda/1000, and for experiments with new materials, different wavelengths, and different incident polarizations.Comment: 15 pages, 5 figures + 12 pages, 5 figures of supplemental informatio
    corecore