50,120 research outputs found

    Post-hoc derivation of SOHO Michelson doppler imager flat fields

    Get PDF
    <p><b>Context:</b> The SOHO satellite now offers a unique perspective on the Sun as it is the only space-based instrument that can provide large, high-resolution data sets over an entire 11-year solar cycle. This unique property enables detailed studies of long-term variations in the Sun. One significant problem when looking for such changes is determining what component of any variation is due to deterioration of the instrument and what is due to the Sun itself. One of the key parameters that changes over time is the apparent sensitivity of individual pixels in the CCD array. This can change considerably as a result of optics damage, radiation damage, and aging of the sensor itself. In addition to reducing the sensitivity of the telescope over time, this damage significantly changes the uniformity of the flat field of the instrument, a property that is very hard to recalibrate in space. For procedures such as feature tracking and intensity analysis, this can cause significant errors.</p> <p><b>Aims:</b> We present a method for deriving high-precision flat fields for high-resolution MDI continuum data, using analysis of existing continuum and magnetogram data sets.</p> <p><b>Methods:</b> A flat field is constructed using a large set (1000-4000 frames) of cospatial magnetogram and continuum data. The magnetogram data is used to identify and mask out magnetically active regions on the continuum data, allowing systematic biases to be avoided. This flat field can then be used to correct individual continuum images from a similar time.</p> <p><b>Results:</b> This method allows us to reduce the residual flat field error by around a factor 6-30, depending on the area considered, enough to significantly change the results from correlation-tracking analysis. One significant advantage of this method is that it can be done retrospectively using archived data, without requiring any special satellite operations.</p&gt

    LMODEL: A satellite precipitation methodology using cloud development modeling. Part I: Algorithm construction and calibration

    Get PDF
    The Lagrangian Model (LMODEL) is a new multisensor satellite rainfall monitoring methodology based on the use of a conceptual cloud-development model that is driven by geostationary satellite imagery and is locally updated using microwave-based rainfall measurements from low earth-orbiting platforms. This paper describes the cloud development model and updating procedures; the companion paper presents model validation results. The model uses single-band thermal infrared geostationary satellite imagery to characterize cloud motion, growth, and dispersal at high spatial resolution (similar to 4 km). These inputs drive a simple, linear, semi-Lagrangian, conceptual cloud mass balance model, incorporating separate representations of convective and stratiform processes. The model is locally updated against microwave satellite data using a two-stage process that scales precipitable water fluxes into the model and then updates model states using a Kalman filter. Model calibration and updating employ an empirical rainfall collocation methodology designed to compensate for the effects of measurement time difference, geolocation error, cloud parallax, and rainfall shear

    Parkes-CDSCC telemetry array: Equipment design

    Get PDF
    A unique combination of Deep Space Network (DSN) and non-DSN facilities in Australia provided enhanced data return from the Voyager spacecraft as it encountered the planet Uranus. Many of the key elements are duplicated from Voyager's encounters with Jupiter and Saturn. Some are unique extensions of that technology

    Analysis of non ambiguous BOC signal acquisition performance Acquisition

    Get PDF
    The Binary Offset Carrier planned for future GNSS signal, including several GALILEO Signals as well as GPS M-code, presents a high degree of spectral separation from conventional signals. It also greatly improves positioning accuracy and enhances multipath rejection. However, with such a modulation, the acquisition process is made more complex. Specific techniques must be employed in order to avoid unacceptable errors. This paper assesses the performance of three method allowing to acquire and track BOC signal unambiguously : The Bump-jumping technique, The "BPSK-like" technique and the subcarrier Phase cancellation technique

    Spectral properties of single gold nanoparticles in close proximity to biological fluorophores excited by 2-photon excitation

    Get PDF
    Metallic nanoparticles (NPs) are able to modify the excitation and emission rates (plasmonic enhancement) of fluorescent molecules in their close proximity. In this work, we measured the emission spectra of 20 nm Gold Nanoparticles (AuNPs) fixed on a glass surface submerged in a solution of different fluorophores using a spectral camera and 2-photon excitation. While on the glass surface, we observed the presence in the emission at least 3 components: i) second harmonic signal (SHG), ii) a broad emission from AuNPS and iii) fluorescence arising from fluorophores nearby. When on the glass surface, we found that the 3 spectral components have different relative intensities when the incident direction of linear polarization was changed indicating different physical origins for these components. Then we measured by fluctuation correlation spectroscopy (FCS) the scattering and fluorescence signal of the particles alone and in a solution of 100 nM EGFP using the spectral camera or measuring the scattering and fluorescence from the particles. We observed occasional fluorescence bursts when in the suspension we added fluorescent proteins. The spectrum of these burst was devoid of the SHG and of the broad emission in contrast to the signal collected from the gold nanoparticles on the glass surface. Instead we found that the spectrum during the burst corresponded closely to the spectrum of the fluorescent protein. An additional control was obtained by measuring the cross-correlation between the reflection from the particles and the fluorescence arising from EGFP both excited at 488 nm. We found a very weak cross-correlation between the AuNPs and the fluorescence confirming that the burst originate from a few particles with a fluorescence signal.Fil: Anzalone, Andrea. University of California at Irvine; Estados UnidosFil: Gabriel, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina. University of California at Irvine; Estados UnidosFil: Estrada, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina. University of California at Irvine; Estados UnidosFil: Gratton, Enrico. University of California at Irvine; Estados Unidos. University of New England; Australi
    corecore