918 research outputs found

    Ontology Alignment using Biologically-inspired Optimisation Algorithms

    Get PDF
    It is investigated how biologically-inspired optimisation methods can be used to compute alignments between ontologies. Independent of particular similarity metrics, the developed techniques demonstrate anytime behaviour and high scalability. Due to the inherent parallelisability of these population-based algorithms it is possible to exploit dynamically scalable cloud infrastructures - a step towards the provisioning of Alignment-as-a-Service solutions for future semantic applications

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    09091 Abstracts Collection -- Formal Methods in Molecular Biology

    Get PDF
    From 23. February to 27. February 2009, the Dagstuhl Seminar 09091 ``Formal Methods in Molecular Biology \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    04511 Abstracts Collection -- Architecting Systems with Trustworthy Components

    Get PDF
    From 12.12.04 to 17.12.04, the Dagstuhl Seminar 04511 ``Architecting Systems with Trustworthy Components\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Probabilistic Methodology and Techniques for Artefact Conception and Development

    Get PDF
    The purpose of this paper is to make a state of the art on probabilistic methodology and techniques for artefact conception and development. It is the 8th deliverable of the BIBA (Bayesian Inspired Brain and Artefacts) project. We first present the incompletness problem as the central difficulty that both living creatures and artefacts have to face: how can they perceive, infer, decide and act efficiently with incomplete and uncertain knowledge?. We then introduce a generic probabilistic formalism called Bayesian Programming. This formalism is then used to review the main probabilistic methodology and techniques. This review is organized in 3 parts: first the probabilistic models from Bayesian networks to Kalman filters and from sensor fusion to CAD systems, second the inference techniques and finally the learning and model acquisition and comparison methodologies. We conclude with the perspectives of the BIBA project as they rise from this state of the art

    A logic-based approach for the verification of UML timed models

    Get PDF
    This article presents a novel technique to formally verify models of real-time systems captured through a set of heterogeneous UML diagrams. The technique is based on the following key elements: (i) a subset of Unified Modeling Language (UML) diagrams, called Coretto UML (C-UML), which allows designers to describe the components of the system and their behavior through several kinds of diagrams (e.g., state machine diagrams, sequence diagrams, activity diagrams, interaction overview diagrams), and stereotypes taken from the UML Profile for Modeling and Analysis of Real-Time and Embedded Systems; (ii) a formal semantics of C-UML diagrams, defined through formulae of the metric temporal logic Tempo Reale ImplicitO (TRIO); and (iii) a tool, called Corretto, which implements the aforementioned semantics and allows users to carry out formal verification tasks on modeled systems. We validate the feasibility of our approach through a set of different case studies, taken from both the academic and the industrial domain
    • …
    corecore