2,157 research outputs found

    AGI-P: A Gender Identification Framework for Authorship Analysis Using Customized Fine-Tuning of Multilingual Language Model

    Get PDF
    In this investigation, we propose a solution for the author’s gender identification task called AGI-P. This task has several real-world applications across different fields, such as marketing and advertising, forensic linguistics, sociology, recommendation systems, language processing, historical analysis, education, and language learning. We created a new dataset to evaluate our proposed method. The dataset is balanced in terms of gender using a random sampling method and consists of 1944 samples in total. We use accuracy as an evaluation measure and compare the performance of the proposed solution (AGI-P) against state-of-the-art machine learning classifiers and fine-tuned pre-trained multilingual language models such as DistilBERT, mBERT, XLM-RoBERTa, and Multilingual DEBERTa. In this regard, we also propose a customized fine-tuning strategy that improves the accuracy of the pre-trained language models for the author gender identification task. Our extensive experimental studies reveal that our solution (AGI-P) outperforms the well-known machine learning classifiers and fine-tuned pre-trained multilingual language models with an accuracy level of 92.03%. Moreover, the pre-trained multilingual language models, fine-tuned with the proposed customized strategy, outperform the fine-tuned pre-trained language models using an out-of-the-box fine-tuning strategy. The codebase and corpus can be accessed on our GitHub page at: https://github.com/mumairhassan/AGI-

    Deep Learning Techniques for Electroencephalography Analysis

    Get PDF
    In this thesis we design deep learning techniques for training deep neural networks on electroencephalography (EEG) data and in particular on two problems, namely EEG-based motor imagery decoding and EEG-based affect recognition, addressing challenges associated with them. Regarding the problem of motor imagery (MI) decoding, we first consider the various kinds of domain shifts in the EEG signals, caused by inter-individual differences (e.g. brain anatomy, personality and cognitive profile). These domain shifts render multi-subject training a challenging task and impede robust cross-subject generalization. We build a two-stage model ensemble architecture and propose two objectives to train it, combining the strengths of curriculum learning and collaborative training. Our subject-independent experiments on the large datasets of Physionet and OpenBMI, verify the effectiveness of our approach. Next, we explore the utilization of the spatial covariance of EEG signals through alignment techniques, with the goal of learning domain-invariant representations. We introduce a Riemannian framework that concurrently performs covariance-based signal alignment and data augmentation, while training a convolutional neural network (CNN) on EEG time-series. Experiments on the BCI IV-2a dataset show that our method performs superiorly over traditional alignment, by inducing regularization to the weights of the CNN. We also study the problem of EEG-based affect recognition, inspired by works suggesting that emotions can be expressed in relative terms, i.e. through ordinal comparisons between different affective state levels. We propose treating data samples in a pairwise manner to infer the ordinal relation between their corresponding affective state labels, as an auxiliary training objective. We incorporate our objective in a deep network architecture which we jointly train on the tasks of sample-wise classification and pairwise ordinal ranking. We evaluate our method on the affective datasets of DEAP and SEED and obtain performance improvements over deep networks trained without the additional ranking objective

    Generate fuzzy string-matching to build self attention on Indonesian medical-chatbot

    Get PDF
    Chatbot is a form of interactive conversation that requires quick and precise answers. The process of identifying answers to users’ questions involves string matching and handling incorrect spelling. Therefore, a system that can independently predict and correct letters is highly necessary. The approach used to address this issue is to enhance the fuzzy string-matching method by incorporating several features for self-attention. The combination of fuzzy string-matching methods employed includes Jaro Winkler distance + Levenshtein Damerau distance and Damerau Levenshtein + Rabin Carp. The reason for using this combination is their ability not only to match strings but also to correct word typing errors. This research contributes by developing a self-attention mechanism through a modified fuzzy string-matching model with enhanced word feature structures. The goal is to utilize this self-attention mechanism in constructing the Indonesian medical bidirectional encoder representations from transformers (IM-BERT). This will serve as a foundation for additional features to provide accurate answers in the Indonesian medical question and answer system, achieving an exact match of 85.7% and an F1-score of 87.6%

    The ethical implications of using generative chatbots in higher education

    Get PDF
    Incorporating artificial intelligence (AI) into education, specifically through generative chatbots, can transform teaching and learning for education professionals in both administrative and pedagogical ways. However, the ethical implications of using generative chatbots in education must be carefully considered. Ethical concerns about advanced chatbots have yet to be explored in the education sector. This short article introduces the ethical concerns associated with introducing platforms such as ChatGPT in education. The article outlines how handling sensitive student data by chatbots presents significant privacy challenges, thus requiring adherence to data protection regulations, which may not always be possible. It highlights the risk of algorithmic bias in chatbots, which could perpetuate societal biases, which can be problematic. The article also examines the balance between fostering student autonomy in learning and the potential impact on academic self-efficacy, noting the risk of over-reliance on AI for educational purposes. Plagiarism continues to emerge as a critical ethical concern, with AI-generated content threatening academic integrity. The article advocates for comprehensive measures to address these ethical issues, including clear policies, advanced plagiarism detection techniques, and innovative assessment methods. By addressing these ethical challenges, the article argues that educators, AI developers, policymakers, and students can fully harness the potential of chatbots in education, creating a more inclusive, empowering, and ethically sound educational future.</jats:p

    Optimizing digital archiving: An artificial intelligence approach for OCR error correction

    Get PDF
    Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsThis thesis research scopes the knowledge gap for effective ways to address OCR errors and the importance to have training datasets adequated size and quality, to promote digital documents OCR recognition efficiency. The main goal is to examine the effects regarding the following dimensions of sourcing data: input size vs performance vs time efficiency, and to propose a new design that includes a machine translation model, to automate the errors correction caused by OCR scan. The study implemented various LSTM, with different thresholds, to recover errors generated by OCR systems. However, the results did not overcomed the performance of existing OCR systems, due to dataset size limitations, a step further was achieved. A relationship between performance and input size was established, providing meaningful insights for future digital archiving systems optimisation. This dissertation creates a new approach, to deal with OCR problems and implementation considerations, that can be further followed, to optimise digital archive systems efficiency and results

    A Simple and Effective Method of Cross-Lingual Plagiarism Detection

    Full text link
    We present a simple cross-lingual plagiarism detection method applicable to a large number of languages. The presented approach leverages open multilingual thesauri for candidate retrieval task and pre-trained multilingual BERT-based language models for detailed analysis. The method does not rely on machine translation and word sense disambiguation when in use, and therefore is suitable for a large number of languages, including under-resourced languages. The effectiveness of the proposed approach is demonstrated for several existing and new benchmarks, achieving state-of-the-art results for French, Russian, and Armenian languages

    Relatedly: Scaffolding Literature Reviews with Existing Related Work Sections

    Full text link
    Scholars who want to research a scientific topic must take time to read, extract meaning, and identify connections across many papers. As scientific literature grows, this becomes increasingly challenging. Meanwhile, authors summarize prior research in papers' related work sections, though this is scoped to support a single paper. A formative study found that while reading multiple related work paragraphs helps overview a topic, it is hard to navigate overlapping and diverging references and research foci. In this work, we design a system, Relatedly, that scaffolds exploring and reading multiple related work paragraphs on a topic, with features including dynamic re-ranking and highlighting to spotlight unexplored dissimilar information, auto-generated descriptive paragraph headings, and low-lighting of redundant information. From a within-subjects user study (n=15), we found that scholars generate more coherent, insightful, and comprehensive topic outlines using Relatedly compared to a baseline paper list

    Speculative futures on ChatGPT and generative artificial intelligence (AI): a collective reflection from the educational landscape

    Get PDF
    While ChatGPT has recently become very popular, AI has a long history and philosophy. This paper intends to explore the promises and pitfalls of the Generative Pre-trained Transformer (GPT) AI and potentially future technologies by adopting a speculative methodology. Speculative future narratives with a specific focus on educational contexts are provided in an attempt to identify emerging themes and discuss their implications for education in the 21st century. Affordances of (using) AI in Education (AIEd)and possible adverse effects are identified and discussed which emerge from the narratives. It is argued that now is the best of times to define human vs AI contribution to education because AI can accomplish more and more educational activities that used to be the prerogative of human educators. Therefore, it is imperative to rethink the respective roles of technology and human educators in education with a future-oriented mindse

    “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy

    Get PDF
    Transformative artificially intelligent tools, such as ChatGPT, designed to generate sophisticated text indistinguishable from that produced by a human, are applicable across a wide range of contexts. The technology presents opportunities as well as, often ethical and legal, challenges, and has the potential for both positive and negative impacts for organisations, society, and individuals. Offering multi-disciplinary insight into some of these, this article brings together 43 contributions from experts in fields such as computer science, marketing, information systems, education, policy, hospitality and tourism, management, publishing, and nursing. The contributors acknowledge ChatGPT’s capabilities to enhance productivity and suggest that it is likely to offer significant gains in the banking, hospitality and tourism, and information technology industries, and enhance business activities, such as management and marketing. Nevertheless, they also consider its limitations, disruptions to practices, threats to privacy and security, and consequences of biases, misuse, and misinformation. However, opinion is split on whether ChatGPT’s use should be restricted or legislated. Drawing on these contributions, the article identifies questions requiring further research across three thematic areas: knowledge, transparency, and ethics; digital transformation of organisations and societies; and teaching, learning, and scholarly research. The avenues for further research include: identifying skills, resources, and capabilities needed to handle generative AI; examining biases of generative AI attributable to training datasets and processes; exploring business and societal contexts best suited for generative AI implementation; determining optimal combinations of human and generative AI for various tasks; identifying ways to assess accuracy of text produced by generative AI; and uncovering the ethical and legal issues in using generative AI across different contexts

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table
    corecore