58 research outputs found

    Coresets for Wasserstein Distributionally Robust Optimization Problems

    Full text link
    Wasserstein distributionally robust optimization (\textsf{WDRO}) is a popular model to enhance the robustness of machine learning with ambiguous data. However, the complexity of \textsf{WDRO} can be prohibitive in practice since solving its ``minimax'' formulation requires a great amount of computation. Recently, several fast \textsf{WDRO} training algorithms for some specific machine learning tasks (e.g., logistic regression) have been developed. However, the research on designing efficient algorithms for general large-scale \textsf{WDRO}s is still quite limited, to the best of our knowledge. \textit{Coreset} is an important tool for compressing large dataset, and thus it has been widely applied to reduce the computational complexities for many optimization problems. In this paper, we introduce a unified framework to construct the ϵ\epsilon-coreset for the general \textsf{WDRO} problems. Though it is challenging to obtain a conventional coreset for \textsf{WDRO} due to the uncertainty issue of ambiguous data, we show that we can compute a ``dual coreset'' by using the strong duality property of \textsf{WDRO}. Also, the error introduced by the dual coreset can be theoretically guaranteed for the original \textsf{WDRO} objective. To construct the dual coreset, we propose a novel grid sampling approach that is particularly suitable for the dual formulation of \textsf{WDRO}. Finally, we implement our coreset approach and illustrate its effectiveness for several \textsf{WDRO} problems in the experiments

    Large Scale Clustering with Variational EM for Gaussian Mixture Models

    Full text link
    How can we efficiently find large numbers of clusters in large data sets with high-dimensional data points? Our aim is to explore the current efficiency and large-scale limits in fitting a parametric model for clustering to data distributions. To do so, we combine recent lines of research which have previously focused on separate specific methods for complexity reduction. We first show theoretically how the clustering objective of variational EM (which reduces complexity for many clusters) can be combined with coreset objectives (which reduce complexity for many data points). Secondly, we realize a concrete highly efficient iterative procedure which combines and translates the theoretical complexity gains of truncated variational EM and coresets into a practical algorithm. For very large scales, the high efficiency of parameter updates then requires (A) highly efficient coreset construction and (B) highly efficient initialization procedures (seeding) in order to avoid computational bottlenecks. Fortunately very efficient coreset construction has become available in the form of light-weight coresets, and very efficient initialization has become available in the form of AFK-MC2^2 seeding. The resulting algorithm features balanced computational costs across all constituting components. In applications to standard large-scale benchmarks for clustering, we investigate the algorithm's efficiency/quality trade-off. Compared to the best recent approaches, we observe speedups of up to one order of magnitude, and up to two orders of magnitude compared to the kk-means++ baseline. To demonstrate that the observed efficiency enables previously considered unfeasible applications, we cluster the entire and unscaled 80 Mio. Tiny Images dataset into up to 32,000 clusters. To the knowledge of the authors, this represents the largest scale fit of a parametric data model for clustering reported so far
    • …
    corecore