211 research outputs found

    Pruning Processes and a New Characterization of Convex Geometries

    Get PDF
    We provide a new characterization of convex geometries via a multivariate version of an identity that was originally proved by Maneva, Mossel and Wainwright for certain combinatorial objects arising in the context of the k-SAT problem. We thus highlight the connection between various characterizations of convex geometries and a family of removal processes studied in the literature on random structures.Comment: 14 pages, 3 figures; the exposition has changed significantly from previous versio

    Cache-Oblivious Peeling of Random Hypergraphs

    Full text link
    The computation of a peeling order in a randomly generated hypergraph is the most time-consuming step in a number of constructions, such as perfect hashing schemes, random rr-SAT solvers, error-correcting codes, and approximate set encodings. While there exists a straightforward linear time algorithm, its poor I/O performance makes it impractical for hypergraphs whose size exceeds the available internal memory. We show how to reduce the computation of a peeling order to a small number of sequential scans and sorts, and analyze its I/O complexity in the cache-oblivious model. The resulting algorithm requires O(sort(n))O(\mathrm{sort}(n)) I/Os and O(nlogn)O(n \log n) time to peel a random hypergraph with nn edges. We experimentally evaluate the performance of our implementation of this algorithm in a real-world scenario by using the construction of minimal perfect hash functions (MPHF) as our test case: our algorithm builds a MPHF of 7.67.6 billion keys in less than 2121 hours on a single machine. The resulting data structure is both more space-efficient and faster than that obtained with the current state-of-the-art MPHF construction for large-scale key sets

    A Phase Transition in Minesweeper

    Get PDF
    We study the average-case complexity of the classic Minesweeper game in which players deduce the locations of mines on a two-dimensional lattice. Playing Minesweeper is known to be co-NP-complete. We show empirically that Minesweeper exhibits a phase transition analogous to the well-studied SAT phase transition. Above the critical mine density it becomes almost impossible to play Minesweeper by logical inference. We use a reduction to Boolean unsatisfiability to characterize the hardness of Minesweeper instances, and show that the hardness peaks at the phase transition. Furthermore, we demonstrate algorithmic barriers at the phase transition for polynomial-time approaches to Minesweeper inference. Finally, we comment on expectations for the asymptotic behavior of the phase transition

    Tight Thresholds for Cuckoo Hashing via XORSAT

    Full text link
    We settle the question of tight thresholds for offline cuckoo hashing. The problem can be stated as follows: we have n keys to be hashed into m buckets each capable of holding a single key. Each key has k >= 3 (distinct) associated buckets chosen uniformly at random and independently of the choices of other keys. A hash table can be constructed successfully if each key can be placed into one of its buckets. We seek thresholds alpha_k such that, as n goes to infinity, if n/m <= alpha for some alpha < alpha_k then a hash table can be constructed successfully with high probability, and if n/m >= alpha for some alpha > alpha_k a hash table cannot be constructed successfully with high probability. Here we are considering the offline version of the problem, where all keys and hash values are given, so the problem is equivalent to previous models of multiple-choice hashing. We find the thresholds for all values of k > 2 by showing that they are in fact the same as the previously known thresholds for the random k-XORSAT problem. We then extend these results to the setting where keys can have differing number of choices, and provide evidence in the form of an algorithm for a conjecture extending this result to cuckoo hash tables that store multiple keys in a bucket.Comment: Revision 3 contains missing details of proofs, as appendix
    corecore