24 research outputs found

    Modeling of Inductive Contactless Energy Transfer Systems

    Get PDF
    In the domain of electronic devices and especially desktop peripherals, there is an industrial trend which consists in removing the cables that pollute our domestic and professional environments. In this sense, wireless communication protocols are already massively widespread while the power supplies still use wires or batteries. To address this problem, alternative solutions must be investigated such as contactless energy transfer (CET). In a broad sense, CET is a process that allows to bring electrical energy from one point to another through a given medium (generally air or vacuum) and at a certain distance. Inductive CET means that the intermediate form of energy is the magnetic induction, generated from primary coils excited by high-frequency alternating currents and collected in secondary coils by induced voltages. Most of existing approaches to design CET systems are applicable to only single applications and do not include an optimization method. For this reason, the present thesis focuses on the modeling, design and optimization of inductive CET systems. Using the coreless transformer as the central part of CET systems, an equivalent electric model is derived from the theory of conventional transformers. The absence of ferrite core gives rise to a specific characteristic, which is to have large leakage inductances compared to the main one. In order to circumvent this issue, using a high frequency together with a resonant circuit allow to enhance the effect of the mutual inductance and to transfer power with an excellent efficiency. Different parts of the coreless transformer are addressed separately. First, an accurate modeling of DC resistances, self and mutual inductances is proposed. Then, the equivalent electric circuit is resolved and the different compensation topologies for the resonant circuit are discussed. Finally, the AC resistance is computed using a 2D finite element modeling that takes into account the skin and proximity effects in the conductors. So as to exploit optimally FEM simulations, a complete output mapping together with a specific interpolation strategy are implemented, giving access to the AC resistance evaluation in a very short time. As a result, all the models are implemented in a way that makes them highly adaptable and low-consuming in term of computing resources. Then a sensitivity analyzis is performed in order to restrict the variation range of different parameters and to provide a general and intuitive understanding of inductive CET. After that, an optimization method using genetic algorithms (GAs) is presented. The main advantage of GAs is that the number of free parameters does not change the complexity of the algorithm. They are very efficient when a lot of free parameters are involved and for optimizations where the computing time is a key factor. As existing GAs failed to converge properly for different tested CET problems, a new one is developed, that allows to optimize two objective functions in the same time. It is thus a multiobjective genetic algorithm (MOGA) and has been successfully applied to the design of different CET systems. Finally, in order to validate the models and optimization methods proposed along the thesis, several prototypes are built, measured and tested. Notably, a CET table that allows to supply simultaneously different peripherals is fabricated. By analyzing in real time the current amplitude in the primary coils, an efficient sensorless detection of the peripherals is implemented. Digital control techniques have enabled the autonomous management of the detection and the local activation of the table. These results contribute to the future development of robust and efficient CET tables

    Central Solenoid Insert Technical Specification

    Full text link

    Design and Fabrication of Bond Wire Micro-Magnetics

    Get PDF
    This thesis presents a new approach for the design and fabrication of bond wire magnetics for power converter applications by using standard IC gold bonding wires and micro-machined magnetic cores. It shows a systematic design and characterization study for bond wire transformers with toroidal and race-track cores for both PCB and silicon substrates. Measurement results show that the use of ferrite cores increases the secondary self-inductance up to 315 ”H with a Q-factor up to 24.5 at 100 kHz. Measurement results on LTCC core report an enhancement of the secondary self-inductance up to 23 ”H with a Q-factor up to 10.5 at 1.4 MHz. A resonant DC-DC converter is designed in 0.32 ”m BCD6s technology at STMicroelectronics with a depletion nmosfet and a bond wire micro-transformer for EH applications. Measures report that the circuit begins to oscillate from a TEG voltage of 280 mV while starts to convert from an input down to 330 mV to a rectified output of 0.8 V at an input of 400 mV. Bond wire magnetics is a cost-effective approach that enables a flexible design of inductors and transformers with high inductance and high turns ratio. Additionally, it supports the development of magnetics on top of the IC active circuitry for package and wafer level integrations, thus enabling the design of high density power components. This makes possible the evolution of PwrSiP and PwrSoC with reliable highly efficient magnetics

    Lab-on-PCB Devices

    Get PDF
    Lab-on-PCB devices can be considered an emerging technology. In fact, most of the contributions have been published during the last 5 years. It is mainly focussed on both biomedical and electronic applications. The book includes an interesting guide for using the different layers of the Printed Circuit Boards for developing new devices; guidelines for fabricating PCB-based electrochemical biosensors, and an overview of fluid manipulation devices fabricated using Printed Circuit Boards. In addition, current PCB-based devices are reported, and studies for several aspects of research and development of lab-on-PCB devices are described

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Optical Methods in Sensing and Imaging for Medical and Biological Applications

    Get PDF
    The recent advances in optical sources and detectors have opened up new opportunities for sensing and imaging techniques which can be successfully used in biomedical and healthcare applications. This book, entitled ‘Optical Methods in Sensing and Imaging for Medical and Biological Applications’, focuses on various aspects of the research and development related to these areas. The book will be a valuable source of information presenting the recent advances in optical methods and novel techniques, as well as their applications in the fields of biomedicine and healthcare, to anyone interested in this subject

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin
    corecore