1,866 research outputs found

    Packet Transactions: High-level Programming for Line-Rate Switches

    Full text link
    Many algorithms for congestion control, scheduling, network measurement, active queue management, security, and load balancing require custom processing of packets as they traverse the data plane of a network switch. To run at line rate, these data-plane algorithms must be in hardware. With today's switch hardware, algorithms cannot be changed, nor new algorithms installed, after a switch has been built. This paper shows how to program data-plane algorithms in a high-level language and compile those programs into low-level microcode that can run on emerging programmable line-rate switching chipsets. The key challenge is that these algorithms create and modify algorithmic state. The key idea to achieve line-rate programmability for stateful algorithms is the notion of a packet transaction : a sequential code block that is atomic and isolated from other such code blocks. We have developed this idea in Domino, a C-like imperative language to express data-plane algorithms. We show with many examples that Domino provides a convenient and natural way to express sophisticated data-plane algorithms, and show that these algorithms can be run at line rate with modest estimated die-area overhead.Comment: 16 page

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    A core stateless bandwidth broker architecture for scalable support of guaranteed services

    Full text link

    Advances in Internet Quality of Service

    Get PDF
    We describe recent advances in theories and architecture that support performance guarantees needed for quality of service networks. We start with deterministic computations and give applications to integrated services, differentiated services, and playback delays. We review the methods used for obtaining a scalable integrated services support, based on the concept of a stateless core. New probabilistic results that can be used for a statistical dimensioning of differentiated services are explained; some are based on classical queuing theory, while others capitalize on the deterministic results. Then we discuss performance guarantees in a best effort context; we review: methods to provide some quality of service in a pure best effort environment; methods to provide some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Providing guaranteed QoS in the hose-modeled VPN

    Get PDF
    With the development of the Internet, Internet service providers (ISPs) are required to offer revenue-generating and value-added services instead of only providing bandwidth and access services. Virtual Private Network (VPN) is one of the most important value-added services for ISPs. The classical VPN service is provided by implementing layer 2 technologies, either Frame Relay (FR) or Asynchronous Transfer Mode (ATM). With FR or ATM, virtual circuits are created before data delivery. Since the bandwidth and buffers are reserved, the QoS requirements can be naturally guaranteed. In the past few years, layer 3 VPN technologies are widely deployed due to the desirable performance in terms of flexibility, scalability and simplicity. Layer 3 VPNs are built upon IP tunnels, e.g., by using PPTP, L2TP or IPSec. Since IP is best-of-effort in nature, the QoS requirement cannot be guaranteed in layer 3 VPNs. Actually, layer 3 VPN service can only provide secure connectivity, i.e., protecting and authenticating IP packets between gateways or hosts in a VPN. Without doubt, with more applications on voice, audio and video being used in the Internet, the provision of QoS is one of the most important parts of the emerging services provided by ISPs. An intriguing question is: Is it possible to obtain the best of both layer 2 and 3 VPN? Is it possible to provide guaranteed or predictable QoS, as in layer 2 VPNs, while maintaining the flexibility and simplicity in layer 3 VPN? This question is the starting point of this study. The recently proposed hose model for VPN possesses desirable properties in terms of flexibility, scalability and multiplexing gain. However, the classic fair bandwidth allocation schemes and weighted fair queuing schemes raise the issue of low overall utilization in this model. A new fluid model for provider-provisioned virtual private network (PPVPN) is proposed in this dissertation. Based on the proposed model, an idealized fluid bandwidth allocation scheme is developed. This scheme is proven, analytically, to have the following properties: 1) maximize the overall throughput of the VPN without compromising fairness; 2) provide a mechanism that enables the VPN customers to allocate the bandwidth according to their requirements by assigning different weights to different hose flows, and thus obtain the predictable QoS performance; and 3) improve the overall throughput of the ISPs\u27 network. To approximate the idealized fluid scheme in the real world, the 2-dimensional deficit round robin (2-D DRR and 2-D DRR+) schemes are proposed. The integration of the proposed schemes with the best-effort traffic within the framework of virtual-router-based VPN is also investigated. The 2-D DRR and 2-D DER-+ schemes can be extended to multi-dimensional schemes to be employed in those applications which require a hierarchical scheduling architecture. To enhance the scalability, a more scalable non-per-flow-based scheme for output queued switches is developed as well, and the integration of this scheme within the framework of the MPLS VPN and applications for multicasting traffics is discussed. The performance and properties of these schemes are analyzed

    Maintaining flow isolation in work-conserving flow aggregation

    Get PDF
    Abstract — In order to improve the scalability of scheduling protocols with bounded end-to-end delay, much effort has focused on reducing the amount of per-flow state at routers. One technique to reduce this state is flow aggregation, in which multiple individual flows are aggregated into a single aggregate flow. In addition to reducing per-flow state, flow aggregation has the advantage of a per-hop delay that is inversely proportional to the rate of the aggregate flow, while in the case of no aggregation, the per-hop delay is inversely proportional to the (smaller) rate of the individual flow. Flow aggregation in general is non-work-conserving. Recently, a work-conserving flow aggregation technique has been proposed. However, it has the disadvantage that the end-to-end delay of an individual flow is related to the burstiness of other flows sharing its aggregate flow. Here, we show how work-conserving flow aggregation may be performed without this drawback, that is, the end-to-end delay of an individual flow is independent of the burstiness of other flows. I
    • …
    corecore