10 research outputs found

    Coqoon - An IDE for Interactive Proof Development in Coq

    Get PDF

    Coqoon

    Get PDF
    International audienceUser interfaces for interactive proof assistants have always lagged behind those for mainstream programming languages. Whereas integrated development environments (IDEs) have support for features like project management, version control, dependency analysis and incremental project compilation, " IDE " s for proof assistants typically only operate on files in isolation, relying on external tools to integrate those files into larger projects. In this paper we present Coqoon, an IDE for Coq projects integrated into Eclipse. Coqoon manages proofs as projects rather than isolated source files, and compiles these projects using the Eclipse common build system. Coqoon takes advantage of the latest features of Coq, including asynchronous and parallel processing of proofs, and—when used together with a third-party OCaml extension for Eclipse—can even be used to work on large developments containing Coq plugins

    Coqoon An IDE for interactive proof development in Coq

    Get PDF
    International audienceUser interfaces for interactive proof assistants have always lagged behind those for mainstream programming languages. Whereas integrated development environments—IDEs—have support for features like project management, version control, dependency analysis and in-cremental project compilation, " IDE " s for proof assistants typically only operate on files in isolation, relying on external tools to integrate those files into larger projects. In this paper we present Coqoon, an IDE for Coq developments integrated into Eclipse. Coqoon manages proofs as projects rather than isolated source files, and compiles these projects using the Eclipse common build system. Coqoon takes advantage of the latest features of Coq, including asynchronous and parallel processing of proofs, and—when used together with a third-party OCaml extension for Eclipse—can even be used to work on large developments containing Coq plugins

    Asynchronous processing of Coq documents: from the kernel up to the user interface

    Get PDF
    The work described in this paper improves the reactivity of the Coq system by completely redesigning the way it processes a formal document. By subdividing such work into independent tasks the system can give precedence to the ones of immediate interest for the user and postpones the others. On the user side, a modern interface based on the PIDE middleware aggregates and present in a consistent way the output of the prover. Finally postponed tasks are processed exploiting modern, parallel, hardware to offer better scalability.Comment: in Proceedings of ITP, Aug 2015, Nanjing, Chin

    SerAPI: Machine-Friendly, Data-Centric Serialization for COQ: Technical Report

    Get PDF
    We present SerAPI, a library and protocol for machine-friendly communication with the COQ proof assistant. SerAPI is implemented using Ocaml's PPX pre-processing technology, and it is specifically targeted to reduce implementation burden for tools such as Integrated Development Environments or code analyzers. SerAPI tries to address common problems that tools interacting with COQ face, providing a uniform and data-centric way to access term representations, proof state, and an extended protocol for document building. SerAPI is work in progress but fully functional. It has been adopted by the jsCoq and PeaCoq Integrated Development Environments , and supports running inside a web browser instance. For the near future, we are focused on extending the document protocol and providing advanced display abilities to clients

    Asynchronous processing of Coq documents: from the kernel up to the user interface

    Get PDF
    International audienceThe work described in this paper improves the reactivity of the Coq system by completely redesigning the way it processes a formal document. By subdividing such work into independent tasks the system can give precedence to the ones of immediate interest for the user and postpones the others. On the user side, a modern interface based on the PIDE middleware aggregates and present in a consistent way the output of the prover. Finally postponed tasks are processed exploiting modern, parallel, hardware to offer better scalability

    Isabelle/DOF: Design and Implementation

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record17th International Conference, SEFM 2019 Oslo, Norway, September 18–20, 2019DOF is a novel framework for defining ontologies and enforcing them during document development and evolution. A major goal of DOF is the integrated development of formal certification documents (e. g., for Common Criteria or CENELEC 50128) that require consistency across both formal and informal arguments. To support a consistent development of formal and informal parts of a document, we provide Isabelle/DOF, an implementation of DOF on top of the formal methods framework Isabelle/HOL. A particular emphasis is put on a deep integration into Isabelleâs IDE, which allows for smooth ontology development as well as immediate ontological feedback during the editing of a document. In this paper, we give an in-depth presentation of the design concepts of DOFâs Ontology Definition Language (ODL) and key aspects of the technology of its implementation. Isabelle/DOF is the first ontology language supporting machine-checked links between the formal and informal parts in an LCF-style interactive theorem proving environment. Sufficiently annotated, large documents can easily be developed collabo- ratively, while ensuring their consistency, and the impact of changes (in the formal and the semi-formal content) is tracked automatically.IRT SystemX, Paris-Saclay, Franc

    Isabelle/DOF. User and Implementation Manual

    Get PDF
    The software for which this is the manual is available via the DOI in this recordIsabelle/DOF provides an implementation of DOF on top of Isabelle/HOL. DOF itself is a novel framework for defining ontologies and enforcing them during document development and document evolution. Isabelle/DOF targets use-cases such as mathematical texts referring to a theory development or technical reports requiring a particular structure. A major application of DOF is the integrated development of formal certification documents (e.g., for Common Criteria or CENELEC 50128) that require consistency across both formal and informal arguments. Isabelle/DOF is integrated into Isabelle’s IDE, which allows for smooth ontology development as well as immediate ontological feedback during the editing of a document. Its checking facilities leverage the collaborative development of documents required to be consistent with an underlying ontological structure. In this user-manual, we give an in-depth presentation of the design concepts of DOF’s Ontology Definition Language (ODL) and describe comprehensively its major commands. Many examples show typical best-practice applications of the system. Isabelle/DOF is the first ontology language supporting machine-checked links between the formal and informal parts in an LCF-style interactive theorem proving environment.IRT System

    Scaling Up Automated Verification: A Case Study and a Formalization IDE for Building High Integrity Software

    Get PDF
    Component-based software verification is a difficult challenge because developers must specify components formally and annotate implementations with suitable assertions that are amenable to automation. This research investigates the intrinsic complexity in this challenge using a component-based case study. Simultaneously, this work also seeks to minimize the extrinsic complexities of this challenge through the development and usage of a formalization integrated development environment (F-IDE) built for specifying, developing, and using verified reusable software components. The first contribution is an F-IDE built to support formal specification and automated verification of object-based software for the integrated specification and programming language RESOLVE. The F-IDE is novel, as it integrates a verifying compiler with a user-friendly interface that provides a number of amenities including responsive editing for model-based mathematical contracts and code, assistance for design by contract, verification, responsive error handling, and generation of property-preserving Java code that can be run within the F-IDE. The second contribution is a case study built using the F-IDE that involves an interplay of multiple artifacts encompassing mathematical units, component interfaces, and realizations. The object-based interfaces involved are specified in terms of new mathematical models and non-trivial theories designed to encapsulate data structures and algorithms. The components are designed to be amenable to modular verification and analysis
    corecore