1,629 research outputs found

    Partition clustering for GIS map data protection

    Get PDF

    Fast compressed domain watermarking of MPEG multiplexed streams

    Get PDF
    In this paper, a new technique for watermarking of MPEG compressed video streams is proposed. The watermarking scheme operates directly in the domain of MPEG multiplexed streams. Perceptual models are used during the embedding process in order to preserve the quality of the video. The watermark is embedded in the compressed domain and is detected without the use of the original video sequence. Experimental evaluation demonstrates that the proposed scheme is able to withstand a variety of attacks. The resulting watermarking system is very fast and reliable, and is suitable for copyright protection and real-time content authentication applications

    Fast watermarking of MPEG-1/2 streams using compressed-domain perceptual embedding and a generalized correlator detector

    Get PDF
    A novel technique is proposed for watermarking of MPEG-1 and MPEG-2 compressed video streams. The proposed scheme is applied directly in the domain of MPEG-1 system streams and MPEG-2 program streams (multiplexed streams). Perceptual models are used during the embedding process in order to avoid degradation of the video quality. The watermark is detected without the use of the original video sequence. A modified correlation-based detector is introduced that applies nonlinear preprocessing before correlation. Experimental evaluation demonstrates that the proposed scheme is able to withstand several common attacks. The resulting watermarking system is very fast and therefore suitable for copyright protection of compressed video

    Copyright Protection of Color Imaging Using Robust-Encoded Watermarking

    Get PDF
    In this paper we present a robust-encoded watermarking method applied to color images for copyright protection, which presents robustness against several geometric and signal processing distortions. Trade-off between payload, robustness and imperceptibility is a very important aspect which has to be considered when a watermark algorithm is designed. In our proposed scheme, previously to be embedded into the image, the watermark signal is encoded using a convolutional encoder, which can perform forward error correction achieving better robustness performance. Then, the embedding process is carried out through the discrete cosine transform domain (DCT) of an image using the image normalization technique to accomplish robustness against geometric and signal processing distortions. The embedded watermark coded bits are extracted and decoded using the Viterbi algorithm. In order to determine the presence or absence of the watermark into the image we compute the bit error rate (BER) between the recovered and the original watermark data sequence. The quality of the watermarked image is measured using the well-known indices: Peak Signal to Noise Ratio (PSNR), Visual Information Fidelity (VIF) and Structural Similarity Index (SSIM). The color difference between the watermarked and original images is obtained by using the Normalized Color Difference (NCD) measure. The experimental results show that the proposed method provides good performance in terms of imperceptibility and robustness. The comparison among the proposed and previously reported methods based on different techniques is also provided
    corecore