2,333 research outputs found

    Forgery detection from printed images: a tool in crime scene analysis

    Get PDF
    .The preliminary analysis of the genuineness of a photo is become, in the time, the first step of any forensic examination that involves images, in case there is not a certainty of its intrinsic authenticity. Digital cameras have largely replaced film based devices, till some years ago, in some areas (countries) just images made from film negatives where considered fully reliable in Court. There was a widespread prejudicial thought regarding a digital image which, according to some people, it cannot ever been considered a legal proof, since its “inconsistent digital nature”. Great efforts have been made by the forensic science community on this field and now, after all this year, different approaches have been unveiled to discover and declare possible malicious frauds, thus to establish whereas an image is authentic or not or, at least, to assess a certain degree of probability of its “pureness”. Nowadays it’s an easy practice to manipulate digital images by using powerful photo editing tools. In order to alter the original meaning of the image, copy-move forgery is the one of the most common ways of manipulating the contents. With this technique a portion of the image is copied and pasted once or more times elsewhere into the same image to hide something or change the real meaning of it. Whenever a digital image (or a printed image) will be presented as an evidence into a Court, it should be followed the criteria to analyze the document with a forensic approach to determine if it contains traces of manipulation. Image forensics literature offers several examples of detectors for such manipulation and, among them, the most recent and effective ones are those based on Zernike moments and those based on Scale Invariant Feature Transform (SIFT). In particular, the capability of SIFT to discover correspondences among similar visual contents allows the forensic analysis to detect even very accurate and realistic copy-move forgeries. In some situation, however, instead of a digital document only its analog version may be available. It is interesting to ask whether it is possible to identify tampering from a printed picture rather than its digital counterpart. Scanned documents or recaptured printed documents by a digital camera are widely used in a number of different scenarios, from medical imaging, law enforcement to banking and daily consumer use. So, in this paper, the problem of identifying copy-move forgery from a printed picture is investigated. The copy-move manipulation is detected by proving the presence of copy-move patches in the scanned image by using the tool, named CADET (Cloned Area DETector), based on our previous methodology which has been adapted in a version tailored for printed image case (e.g. choice of the minimum number of matched keypoints, size of the input image, etc.) In this paper a real case of murder is presented, where an image of a crime scene, submitted as a printed documentary evidence, had been modified by the defense advisors to reject the theory of accusation given by the Prosecutor. The goal of this paper is to experimentally investigate the requirement set under which reliable copy-move forgery detection is possible on printed images, in that way the forgery test is the very first step of an appropriate operational check list manual

    Optical Font Recognition in Smartphone-Captured Images, and its Applicability for ID Forgery Detection

    Full text link
    In this paper, we consider the problem of detecting counterfeit identity documents in images captured with smartphones. As the number of documents contain special fonts, we study the applicability of convolutional neural networks (CNNs) for detection of the conformance of the fonts used with the ones, corresponding to the government standards. Here, we use multi-task learning to differentiate samples by both fonts and characters and compare the resulting classifier with its analogue trained for binary font classification. We train neural networks for authenticity estimation of the fonts used in machine-readable zones and ID numbers of the Russian national passport and test them on samples of individual characters acquired from 3238 images of the Russian national passport. Our results show that the usage of multi-task learning increases sensitivity and specificity of the classifier. Moreover, the resulting CNNs demonstrate high generalization ability as they correctly classify fonts which were not present in the training set. We conclude that the proposed method is sufficient for authentication of the fonts and can be used as a part of the forgery detection system for images acquired with a smartphone camera

    OCR Graph Features for Manipulation Detection in Documents

    Full text link
    Detecting manipulations in digital documents is becoming increasingly important for information verification purposes. Due to the proliferation of image editing software, altering key information in documents has become widely accessible. Nearly all approaches in this domain rely on a procedural approach, using carefully generated features and a hand-tuned scoring system, rather than a data-driven and generalizable approach. We frame this issue as a graph comparison problem using the character bounding boxes, and propose a model that leverages graph features using OCR (Optical Character Recognition). Our model relies on a data-driven approach to detect alterations by training a random forest classifier on the graph-based OCR features. We evaluate our algorithm's forgery detection performance on dataset constructed from real business documents with slight forgery imperfections. Our proposed model dramatically outperforms the most closely-related document manipulation detection model on this task

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Methodology for Evidence Reconstruction in Digital Image Forensics

    Get PDF
    This paper reveals basics of Digital (Image) Forensics. The paper describes the ways to manipulate image, namely, copy-move forgery (copy region in image & paste into another region in same image), image splicing (copy region in image & paste into another image) and image retouching. The paper mainly focuses on copy move forgery detection methods that are classified mainly into two broad approaches- block-based and key-point. Methodology (generalized as well as approach specific) of copy move forgery detection is presented in detail. Copied region is not directly pasted but manipulated (scale, rotation, adding Gaussian noise or combining these transformations) before pasting. The method for detection should robust to these transformations. The paper also presents methodology for reconstruction (if possible) of forged image based on detection result. Keywords: digital forensics, copy-move forgery, keypoint, feature extraction, reconstructio

    Review on passive approaches for detecting image tampering

    Get PDF
    This paper defines the presently used methods and approaches in the domain of digital image forgery detection. A survey of a recent study is explored including an examination of the current techniques and passive approaches in detecting image tampering. This area of research is relatively new and only a few sources exist that directly relate to the detection of image forgeries. Passive, or blind, approaches for detecting image tampering are regarded as a new direction of research. In recent years, there has been significant work performed in this highly active area of research. Passive approaches do not depend on hidden data to detect image forgeries, but only utilize the statistics and/or content of the image in question to verify its genuineness. The specific types of forgery detection techniques are discussed below

    Forensic Analysis of Digital Image Tampering

    Get PDF
    The use of digital photography has increased over the past few years, a trend which opens the door for new and creative ways to forge images. The manipulation of images through forgery influences the perception an observer has of the depicted scene, potentially resulting in ill consequences if created with malicious intentions. This poses a need to verify the authenticity of images originating from unknown sources in absence of any prior digital watermarking or authentication technique. This research explores the holes left by existing research; specifically, the ability to detect image forgeries created using multiple image sources and specialized methods tailored to the popular JPEG image format. In an effort to meet these goals, this thesis presents four methods to detect image tampering based on fundamental image attributes common to any forgery. These include discrepancies in 1) lighting and 2) brightness levels, 3) underlying edge inconsistencies, and 4) anomalies in JPEG compression blocks. Overall, these methods proved encouraging in detecting image forgeries with an observed accuracy of 60% in a completely blind experiment containing a mixture of 15 authentic and forged images

    Implementing the Check 21 Act: potential risks facing banks

    Get PDF
    The Check Clearing for the 21st Century Act (the Check 21 Act) was designed to facilitate technological innovation by accelerating the transition to electronic check processing. Yet, in adopting Check 21-related processing, banks must also appropriately identify and mitigate potential risks associated with this new federal law.Check collection systems ; Checks
    • …
    corecore