6 research outputs found

    Copy-move forgery detection in digital images

    Get PDF
    The ready availability of image-editing software makes it important to ensure the authenticity of images. This thesis concerns the detection and localization of cloning, or Copy-Move Forgery (CMF), which is the most common type of image tampering, in which part(s) of the image are copied and pasted back somewhere else in the same image. Post-processing can be used to produce more realistic doctored images and thus can increase the difficulty of detecting forgery. This thesis presents three novel methods for CMF detection, using feature extraction, surface fitting and segmentation. The Dense Scale Invariant Feature Transform (DSIFT) has been improved by using a different method to estimate the canonical orientation of each circular block. The Fitting Function Rotation Invariant Descriptor (FFRID) has been developed by using the least squares method to fit the parameters of a quadratic function on each block curvatures. In the segmentation approach, three different methods were tested: the SLIC superpixels, the Bag of Words Image and the Rolling Guidance filter with the multi-thresholding method. We also developed the Segment Gradient Orientation Histogram (SGOH) to describe the gradient of irregularly shaped blocks (segments). The experimental results illustrate that our proposed algorithms can detect forgery in images containing copy-move objects with different types of transformation (translation, rotation, scaling, distortion and combined transformation). Moreover, the proposed methods are robust to post-processing (i.e. blurring, brightness change, colour reduction, JPEG compression, variations in contrast and added noise) and can detect multiple duplicated objects. In addition, we developed a new method to estimate the similarity threshold for each image by optimizing a cost function based probability distribution. This method can detect CMF better than using a fixed threshold for all the test images, because our proposed method reduces the false positive and the time required to estimate one threshold for different images in the dataset. Finally, we used the hysteresis to decrease the number of false matches and produce the best possible result

    Detection of copy-move forgery in digital images using different computer vision approaches

    Get PDF
    Image forgery detection approaches are many and varied, but they generally all serve the same objectives: detect and localize the forgery. Copy-move forgery detection (CMFD) is widely spread and must challenge approach. In this thesis, We first investigate the problems and the challenges of the existed algorithms to detect copy-move forgery in digital images and then we propose integrating multiple forensic strategies to overcome these problems and increase the efficiency of detecting and localizing forgery based on the same image input source. Test and evaluate our copy-move forgery detector algorithm presented the outcome that has been enhanced by various computer vision field techniques. Because digital image forgery is a growing problem due to the increase in readily-available technology that makes the process relatively easy for forgers, we propose strategies and applications based on the PatchMatch algorithm and deep neural network learning (DNN). We further focus on the convolutional neural network (CNN) architecture approach in a generative adversarial network (GAN) and transfer learning environment. The F-measure score (FM), recall, precision, accuracy, and efficiency are calculated in the proposed algorithms and compared with a selection of literature algorithms using the same evaluation function in order to make a fair evaluation. The FM score achieves 0.98, with an efficiency rate exceeding 90.5% in most cases of active and passive forgery detection tasks, indicating that the proposed methods are highly robust. The output results show the high efficiency of detecting and localizing the forgery across different image formats for active and passive forgery detection. Therefore, the proposed methods in this research successfully overcome the main investigated issues in copy-move forgery detection as such: First, increase efficiency in copy-move forgery detection under a wide range of manipulation process to a copy-moved image. Second, detect and localized the copy-move forgery patches versus the pristine patches in the forged image. Finally, our experiments show the overall validation accuracy based on the proposed deep learning approach is 90%, according to the iteration limit. Further enhancement of the deep learning and learning transfer approach is recommended for future work

    LWA 2013. Lernen, Wissen & Adaptivität ; Workshop Proceedings Bamberg, 7.-9. October 2013

    Get PDF
    LWA Workshop Proceedings: LWA stands for "Lernen, Wissen, Adaption" (Learning, Knowledge, Adaptation). It is the joint forum of four special interest groups of the German Computer Science Society (GI). Following the tradition of the last years, LWA provides a joint forum for experienced and for young researchers, to bring insights to recent trends, technologies and applications, and to promote interaction among the SIGs

    Elasticity mapping for breast cancer diagnosis using tactile imaging and auxiliary sensor fusion

    Get PDF
    Tactile Imaging (TI) is a technology utilising capacitive pressure sensors to image elasticity distributions within soft tissues such as the breast for cancer screening. TI aims to solve critical problems in the cancer screening pathway, particularly: low sensitivity of manual palpation, patient discomfort during X-ray mammography, and the poor quality of breast cancer referral forms between primary and secondary care facilities. TI is effective in identifying ‘non-palpable’, early-stage tumours, with basic differential ability that reduced unnecessary biopsies by 21% in repeated clinical studies. TI has its limitations, particularly: the measured hardness of a lesion is relative to the background hardness, and lesion location estimates are subjective and prone to operator error. TI can achieve more than simple visualisation of lesions and can act as an accurate differentiator and material analysis tool with further metric development and acknowledgement of error sensitivities when transferring from phantom to clinical trials. This thesis explores and develops two methods, specifically inertial measurement and IR vein imaging, for determining the breast background elasticity, and registering tactile maps for lesion localisation, based on fusion of tactile and auxiliary sensors. These sensors enhance the capabilities of TI, with background tissue elasticity determined with MAE < 4% over tissues in the range 9 kPa – 90 kPa and probe trajectory across the breast measured with an error ratio < 0.3%, independent of applied load, validated on silicone phantoms. A basic TI error model is also proposed, maintaining tactile sensor stability and accuracy with 1% settling times < 1.5s over a range of realistic operating conditions. These developments are designed to be easily implemented into commercial systems, through appropriate design, to maximise impact, providing a stable platform for accurate tissue measurements. This will allow clinical TI to further reduce benign referral rates in a cost-effective manner, by elasticity differentiation and lesion classification in future works.Tactile Imaging (TI) is a technology utilising capacitive pressure sensors to image elasticity distributions within soft tissues such as the breast for cancer screening. TI aims to solve critical problems in the cancer screening pathway, particularly: low sensitivity of manual palpation, patient discomfort during X-ray mammography, and the poor quality of breast cancer referral forms between primary and secondary care facilities. TI is effective in identifying ‘non-palpable’, early-stage tumours, with basic differential ability that reduced unnecessary biopsies by 21% in repeated clinical studies. TI has its limitations, particularly: the measured hardness of a lesion is relative to the background hardness, and lesion location estimates are subjective and prone to operator error. TI can achieve more than simple visualisation of lesions and can act as an accurate differentiator and material analysis tool with further metric development and acknowledgement of error sensitivities when transferring from phantom to clinical trials. This thesis explores and develops two methods, specifically inertial measurement and IR vein imaging, for determining the breast background elasticity, and registering tactile maps for lesion localisation, based on fusion of tactile and auxiliary sensors. These sensors enhance the capabilities of TI, with background tissue elasticity determined with MAE < 4% over tissues in the range 9 kPa – 90 kPa and probe trajectory across the breast measured with an error ratio < 0.3%, independent of applied load, validated on silicone phantoms. A basic TI error model is also proposed, maintaining tactile sensor stability and accuracy with 1% settling times < 1.5s over a range of realistic operating conditions. These developments are designed to be easily implemented into commercial systems, through appropriate design, to maximise impact, providing a stable platform for accurate tissue measurements. This will allow clinical TI to further reduce benign referral rates in a cost-effective manner, by elasticity differentiation and lesion classification in future works

    Contribution to supervised representation learning: algorithms and applications.

    Get PDF
    278 p.In this thesis, we focus on supervised learning methods for pattern categorization. In this context, itremains a major challenge to establish efficient relationships between the discriminant properties of theextracted features and the inter-class sparsity structure.Our first attempt to address this problem was to develop a method called "Robust Discriminant Analysiswith Feature Selection and Inter-class Sparsity" (RDA_FSIS). This method performs feature selectionand extraction simultaneously. The targeted projection transformation focuses on the most discriminativeoriginal features while guaranteeing that the extracted (or transformed) features belonging to the sameclass share a common sparse structure, which contributes to small intra-class distances.In a further study on this approach, some improvements have been introduced in terms of theoptimization criterion and the applied optimization process. In fact, we proposed an improved version ofthe original RDA_FSIS called "Enhanced Discriminant Analysis with Class Sparsity using GradientMethod" (EDA_CS). The basic improvement is twofold: on the first hand, in the alternatingoptimization, we update the linear transformation and tune it with the gradient descent method, resultingin a more efficient and less complex solution than the closed form adopted in RDA_FSIS.On the other hand, the method could be used as a fine-tuning technique for many feature extractionmethods. The main feature of this approach lies in the fact that it is a gradient descent based refinementapplied to a closed form solution. This makes it suitable for combining several extraction methods andcan thus improve the performance of the classification process.In accordance with the above methods, we proposed a hybrid linear feature extraction scheme called"feature extraction using gradient descent with hybrid initialization" (FE_GD_HI). This method, basedon a unified criterion, was able to take advantage of several powerful linear discriminant methods. Thelinear transformation is computed using a descent gradient method. The strength of this approach is thatit is generic in the sense that it allows fine tuning of the hybrid solution provided by different methods.Finally, we proposed a new efficient ensemble learning approach that aims to estimate an improved datarepresentation. The proposed method is called "ICS Based Ensemble Learning for Image Classification"(EM_ICS). Instead of using multiple classifiers on the transformed features, we aim to estimate multipleextracted feature subsets. These were obtained by multiple learned linear embeddings. Multiple featuresubsets were used to estimate the transformations, which were ranked using multiple feature selectiontechniques. The derived extracted feature subsets were concatenated into a single data representationvector with strong discriminative properties.Experiments conducted on various benchmark datasets ranging from face images, handwritten digitimages, object images to text datasets showed promising results that outperformed the existing state-ofthe-art and competing methods
    corecore