5 research outputs found

    Copy number variation analysis based on AluScan sequences

    Get PDF
    BACKGROUND: AluScan combines inter-Alu PCR using multiple Alu-based primers with opposite orientations and next-generation sequencing to capture a huge number of Alu-proximal genomic sequences for investigation. Its requirement of only sub-microgram quantities of DNA facilitates the examination of large numbers of samples. However, the special features of AluScan data rendered difficult the calling of copy number variation (CNV) directly using the calling algorithms designed for whole genome sequencing (WGS) or exome sequencing. RESULTS: In this study, an AluScanCNV package has been assembled for efficient CNV calling from AluScan sequencing data employing a Geary-Hinkley transformation (GHT) of read-depth ratios between either paired test-control samples, or between test samples and a reference template constructed from reference samples, to call the localized CNVs, followed by use of a GISTIC-like algorithm to identify recurrent CNVs and circular binary segmentation (CBS) to reveal large extended CNVs. To evaluate the utility of CNVs called from AluScan data, the AluScans from 23 non-cancer and 38 cancer genomes were analyzed in this study. The glioma samples analyzed yielded the familiar extended copy-number losses on chromosomes 1p and 9. Also, the recurrent somatic CNVs identified from liver cancer samples were similar to those reported for liver cancer WGS with respect to a striking enrichment of copy-number gains in chromosomes 1q and 8q. When localized or recurrent CNV-features capable of distinguishing between liver and non-liver cancer samples were selected by correlation-based machine learning, a highly accurate separation of the liver and non-liver cancer classes was attained. CONCLUSIONS: The results obtained from non-cancer and cancerous tissues indicated that the AluScanCNV package can be employed to call localized, recurrent and extended CNVs from AluScan sequences. Moreover, both the localized and recurrent CNVs identified by this method could be subjected to machine-learning selection to yield distinguishing CNV-features that were capable of separating between liver cancers and other types of cancers. Since the method is applicable to any human DNA sample with or without the availability of a paired control, it can also be employed to analyze the constitutional CNVs of individuals.published_or_final_versio

    AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance.</p> <p>Results</p> <p>Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA.</p> <p>Conclusions</p> <p>AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and intergenic sequences with modest capture and sequencing costs, computation workload and DNA sample requirement is particularly well suited for accelerating the discovery of somatic mutations, as well as analysis of disease-predisposing germline polymorphisms, by making possible the comparative genome-wide scanning of DNA sequences from large human cohorts.</p

    A proposal for the reference-based annotation of de novo transposable element insertions

    Get PDF
    Understanding the causes and consequences of transposable element (TE) activity in the genomic era requires sophisticated bioinformatics approaches to accurately identify individual insertion sites. Next-generation sequencing technology now makes it possible to rapidly identify new TE insertions using resequencing data, opening up new possibilities to study the nature of TE-induced mutation and the target site preferences of different TE families. While the identification of new TE insertion sites is seemingly a simple task, the mechanisms of transposition present unique challenges for the annotation of de novo transposable element insertions mapped to a reference genome. Here I discuss these challenges and propose a framework for the annotation of de novo TE insertions that accommodates known mechanisms of TE insertion and established coordinate systems for genome annotation

    The Dynamic Proliferation of CanSINEs Mirrors the Complex Evolution of Feliforms

    Get PDF
    Background: Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed. Results: We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays. Conclusions: We demonstrate the existence of at least two SINE families within the Feliformia suborder, one of which is actively involved in insertional mutagenesis. We find SINEs are powerful markers of speciation and conclude that the few inconsistencies with expected patterns of speciation likely represent incomplete lineage sorting, species hybridization and SINE-mediated genome rearrangement
    corecore