3,882 research outputs found

    Efficient openMP over sequentially consistent distributed shared memory systems

    Get PDF
    Nowadays clusters are one of the most used platforms in High Performance Computing and most programmers use the Message Passing Interface (MPI) library to program their applications in these distributed platforms getting their maximum performance, although it is a complex task. On the other side, OpenMP has been established as the de facto standard to program applications on shared memory platforms because it is easy to use and obtains good performance without too much effort. So, could it be possible to join both worlds? Could programmers use the easiness of OpenMP in distributed platforms? A lot of researchers think so. And one of the developed ideas is the distributed shared memory (DSM), a software layer on top of a distributed platform giving an abstract shared memory view to the applications. Even though it seems a good solution it also has some inconveniences. The memory coherence between the nodes in the platform is difficult to maintain (complex management, scalability issues, high overhead and others) and the latency of the remote-memory accesses which can be orders of magnitude greater than on a shared bus due to the interconnection network. Therefore this research improves the performance of OpenMP applications being executed on distributed memory platforms using a DSM with sequential consistency evaluating thoroughly the results from the NAS parallel benchmarks. The vast majority of designed DSMs use a relaxed consistency model because it avoids some major problems in the area. In contrast, we use a sequential consistency model because we think that showing these potential problems that otherwise are hidden may allow the finding of some solutions and, therefore, apply them to both models. The main idea behind this work is that both runtimes, the OpenMP and the DSM layer, should cooperate to achieve good performance, otherwise they interfere one each other trashing the final performance of applications. We develop three different contributions to improve the performance of these applications: (a) a technique to avoid false sharing at runtime, (b) a technique to mimic the MPI behaviour, where produced data is forwarded to their consumers and, finally, (c) a mechanism to avoid the network congestion due to the DSM coherence messages. The NAS Parallel Benchmarks are used to test the contributions. The results of this work shows that the false-sharing problem is a relative problem depending on each application. Another result is the importance to move the data flow outside of the critical path and to use techniques that forwards data as early as possible, similar to MPI, benefits the final application performance. Additionally, this data movement is usually concentrated at single points and affects the application performance due to the limited bandwidth of the network. Therefore it is necessary to provide mechanisms that allows the distribution of this data through the computation time using an otherwise idle network. Finally, results shows that the proposed contributions improve the performance of OpenMP applications on this kind of environments

    Declassification: transforming java programs to remove intermediate classes

    Get PDF
    Computer applications are increasingly being written in object-oriented languages like Java and C++ Object-onented programming encourages the use of small methods and classes. However, this style of programming introduces much overhead as each method call results in a dynamic dispatch and each field access becomes a pointer dereference to the heap allocated object. Many of the classes in these programs are included to provide structure rather than to act as reusable code, and can therefore be regarded as intermediate. We have therefore developed an optimisation technique, called declassification, which will transform Java programs into equivalent programs from which these intermediate classes have been removed. The optimisation technique developed involves two phases, analysis and transformation. The analysis involves the identification of intermediate classes for removal. A suitable class is defined to be a class which is used exactly once within a program. Such classes are identified by this analysis The subsequent transformation involves eliminating these intermediate classes from the program. This involves inlinmg the fields and methods of each intermediate class within the enclosing class which uses it. In theory, declassification reduces the number of classes which are instantiated and used in a program during its execution. This should reduce the overhead of object creation and maintenance as child objects are no longer created, and it should also reduce the number of field accesses and dynamic dispatches required by a program to execute. An important feature of the declassification technique, as opposed to other similar techniques, is that it guarantees there will be no increase in code size. An empirical study was conducted on a number of reasonable-sized Java programs and it was found that very few suitable classes were identified for miming. The results showed that the declassification technique had a small influence on the memory consumption and a negligible influence on the run-time performance of these programs. It is therefore concluded that the declassification technique was not successful in optimizing the test programs but further extensions to this technique combined with an intrinsically object-onented set of test programs could greatly improve its success

    Modular Platform for Commercial Mobile Robots

    Get PDF

    JISC Preservation of Web Resources (PoWR) Handbook

    Get PDF
    Handbook of Web Preservation produced by the JISC-PoWR project which ran from April to November 2008. The handbook specifically addresses digital preservation issues that are relevant to the UK HE/FE web management community”. The project was undertaken jointly by UKOLN at the University of Bath and ULCC Digital Archives department

    Qt set-up for texas instruments AM335x ARM Cortex-A8 using linux application for an industrial scale

    Full text link
    [EN] In recent years, there has been a large increase of ARM based consumer products. This surge has been motivated by the efficiency and low cost of these processors, which make them appropriate for low power devices and applications that are not CPU intensive. This work examines the viability of implementing a graphical touchscreen application for an industrial scale on a Texas Instruments AM335x ARM Cortex-A development board as opposed to x86 based systems. This work also intends to serve as a general reference for implementing cross-platform applications with the Qt framework targeted to an embedded Linux system running on an AM335x based hardware. Specifically, the application to be developed is an intuitive graphical touchscreen application that interacts with a Microgram IE21 industrial scale from Microgram Instruments Española S.A. over RS-232 and a SQLite relational database for bulk product commerce by weight. Product and sales information is retrieved and stored in the database.Cholbi Alenda, P. (2014). Qt set-up for texas instruments AM335x ARM Cortex-A8 using linux application for an industrial scale. http://hdl.handle.net/10251/181599Archivo delegad

    Proceedings of the Resolve Workshop 2006

    Get PDF
    The aim of the RESOLVE Workshop 2006 was to bring together researchers and educators interested in: Refining formal approaches to software engineering, especially component-based systems, and introducing them into the classroom. The workshop served as a forum for participants to present and discuss recent advances, trends, and concerns in these areas, as well as formulate a common understanding of emerging research issues and possible solution paths
    corecore