447 research outputs found

    A Computational Framework for Efficient Reliability Analysis of Complex Networks

    Get PDF
    With the growing scale and complexity of modern infrastructure networks comes the challenge of developing efficient and dependable methods for analysing their reliability. Special attention must be given to potential network interdependencies as disregarding these can lead to catastrophic failures. Furthermore, it is of paramount importance to properly treat all uncertainties. The survival signature is a recent development built to effectively analyse complex networks that far exceeds standard techniques in several important areas. Its most distinguishing feature is the complete separation of system structure from probabilistic information. Because of this, it is possible to take into account a variety of component failure phenomena such as dependencies, common causes of failure, and imprecise probabilities without reevaluating the network structure. This cumulative dissertation presents several key improvements to the survival signature ecosystem focused on the structural evaluation of the system as well as the modelling of component failures. A new method is presented in which (inter)-dependencies between components and networks are modelled using vine copulas. Furthermore, aleatory and epistemic uncertainties are included by applying probability boxes and imprecise copulas. By leveraging the large number of available copula families it is possible to account for varying dependent effects. The graph-based design of vine copulas synergizes well with the typical descriptions of network topologies. The proposed method is tested on a challenging scenario using the IEEE reliability test system, demonstrating its usefulness and emphasizing the ability to represent complicated scenarios with a range of dependent failure modes. The numerical effort required to analytically compute the survival signature is prohibitive for large complex systems. This work presents two methods for the approximation of the survival signature. In the first approach system configurations of low interest are excluded using percolation theory, while the remaining parts of the signature are estimated by Monte Carlo simulation. The method is able to accurately approximate the survival signature with very small errors while drastically reducing computational demand. Several simple test systems, as well as two real-world situations, are used to show the accuracy and performance. However, with increasing network size and complexity this technique also reaches its limits. A second method is presented where the numerical demand is further reduced. Here, instead of approximating the whole survival signature only a few strategically selected values are computed using Monte Carlo simulation and used to build a surrogate model based on normalized radial basis functions. The uncertainty resulting from the approximation of the data points is then propagated through an interval predictor model which estimates bounds for the remaining survival signature values. This imprecise model provides bounds on the survival signature and therefore the network reliability. Because a few data points are sufficient to build the interval predictor model it allows for even larger systems to be analysed. With the rising complexity of not just the system but also the individual components themselves comes the need for the components to be modelled as subsystems in a system-of-systems approach. A study is presented, where a previously developed framework for resilience decision-making is adapted to multidimensional scenarios in which the subsystems are represented as survival signatures. The survival signature of the subsystems can be computed ahead of the resilience analysis due to the inherent separation of structural information. This enables efficient analysis in which the failure rates of subsystems for various resilience-enhancing endowments are calculated directly from the survival function without reevaluating the system structure. In addition to the advancements in the field of survival signature, this work also presents a new framework for uncertainty quantification developed as a package in the Julia programming language called UncertaintyQuantification.jl. Julia is a modern high-level dynamic programming language that is ideal for applications such as data analysis and scientific computing. UncertaintyQuantification.jl was built from the ground up to be generalised and versatile while remaining simple to use. The framework is in constant development and its goal is to become a toolbox encompassing state-of-the-art algorithms from all fields of uncertainty quantification and to serve as a valuable tool for both research and industry. UncertaintyQuantification.jl currently includes simulation-based reliability analysis utilising a wide range of sampling schemes, local and global sensitivity analysis, and surrogate modelling methodologies

    EEMCS final report for the causal modeling for air transport safety (CATS) project

    Get PDF
    This document reports on the work realized by the DIAM in relation to the completion of the CATS model as presented in Figure 1.6 and tries to explain some of the steps taken for its completion. The project spans over a period of time of three years. Intermediate reports have been presented throughout the project’s progress. These are presented in Appendix 1. In this report the continuous‐discrete distribution‐free BBNs are briefly discussed. The human reliability models developed for dealing with dependence in the model variables are described and the software application UniNet is presente

    On the Statistical Modeling and Analysis of Repairable Systems

    Full text link
    We review basic modeling approaches for failure and maintenance data from repairable systems. In particular we consider imperfect repair models, defined in terms of virtual age processes, and the trend-renewal process which extends the nonhomogeneous Poisson process and the renewal process. In the case where several systems of the same kind are observed, we show how observed covariates and unobserved heterogeneity can be included in the models. We also consider various approaches to trend testing. Modern reliability data bases usually contain information on the type of failure, the type of maintenance and so forth in addition to the failure times themselves. Basing our work on recent literature we present a framework where the observed events are modeled as marked point processes, with marks labeling the types of events. Throughout the paper the emphasis is more on modeling than on statistical inference.Comment: Published at http://dx.doi.org/10.1214/088342306000000448 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian Network Approach to Assessing System Reliability for Improving System Design and Optimizing System Maintenance

    Get PDF
    abstract: A quantitative analysis of a system that has a complex reliability structure always involves considerable challenges. This dissertation mainly addresses uncertainty in- herent in complicated reliability structures that may cause unexpected and undesired results. The reliability structure uncertainty cannot be handled by the traditional relia- bility analysis tools such as Fault Tree and Reliability Block Diagram due to their deterministic Boolean logic. Therefore, I employ Bayesian network that provides a flexible modeling method for building a multivariate distribution. By representing a system reliability structure as a joint distribution, the uncertainty and correlations existing between system’s elements can effectively be modeled in a probabilistic man- ner. This dissertation focuses on analyzing system reliability for the entire system life cycle, particularly, production stage and early design stages. In production stage, the research investigates a system that is continuously mon- itored by on-board sensors. With modeling the complex reliability structure by Bayesian network integrated with various stochastic processes, I propose several methodologies that evaluate system reliability on real-time basis and optimize main- tenance schedules. In early design stages, the research aims to predict system reliability based on the current system design and to improve the design if necessary. The three main challenges in this research are: 1) the lack of field failure data, 2) the complex reliability structure and 3) how to effectively improve the design. To tackle the difficulties, I present several modeling approaches using Bayesian inference and nonparametric Bayesian network where the system is explicitly analyzed through the sensitivity analysis. In addition, this modeling approach is enhanced by incorporating a temporal dimension. However, the nonparametric Bayesian network approach generally accompanies with high computational efforts, especially, when a complex and large system is modeled. To alleviate this computational burden, I also suggest to building a surrogate model with quantile regression. In summary, this dissertation studies and explores the use of Bayesian network in analyzing complex systems. All proposed methodologies are demonstrated by case studies.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    A Condition-Based Maintenance Model for Assets with Accelerated Deterioration Due to Fault Propagation

    Get PDF
    Complex industrial assets such as power transformers are subject to accelerated deterioration when one of its constituent component malfunctions, affecting the condition of other components, which is a phenomenon called fault propagation. In this paper, we present a novel approach for optimizing condition-based maintenance policies for such assets by modelling their deterioration as a multiple dependent deterioration path process. The aim of the policy is to replace the malfunctioned component and mitigate accelerated deterioration at minimal impact to the business. The maintenance model provides guidance on determining inspection and maintenance strategies to optimize asset availability and operational cost.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/TR.2015.243913

    The role of inclusive leadership in fostering organisational learning behaviour

    Get PDF
    Purpose: Organisational learning is fundamental in establishing a fearless organisation, creating a competitive advantage and maintaining a sustained growth. While research suggests that leaders can influence organisational learning, there is currently no empirical evidence on how inclusive leadership fosters organisational learning behaviour. Therefore, the purpose of this study is to investigate the relationship between inclusive leadership and organisational learning behaviour. It also seeks to explore the mediating role of psychological safety and climate for initiatives in the mentioned relationship. Design/methodology/approach: The study used a two-wave quantitative examination with 317 respondents. Online survey was used to collect data from randomly selected full-time Australian employees in two times. The data were then analysed using partial least squares structural equation modelling to provide insights. Findings: The study found empirical evidence on the positive association of inclusive leadership and organisational learning behaviour. Moreover, the two mediation paths of psychological safety and climate for initiative were supported for the relationship between inclusive leadership and organisational learning behaviour. Research limitations/implications: The current study contributes to theory by examining the role of inclusive leadership on organisational learning behaviour through two relatively unexplored mediating paths. It suggests how inclusive leadership can create a fearless organisation through fostering learning behaviour within the organisation which empowers organisations to sustain growth. Despite controlling for and assessing endogeneity, due to the cross-sectional design of the study, it is limited in demonstrating causal links. Originality/value: The current study provides empirical evidence on the role of inclusive leadership in fostering organisational learning behaviour through two mediating paths of psychological safety and climate for initiatives. The proposed model sets the ground for future research to further develop insights on positive impacts of inclusive leadership within organisations
    corecore