65 research outputs found

    A probabilistic version of the game of Zombies and Survivors on graphs

    Get PDF
    We consider a new probabilistic graph searching game played on graphs, inspired by the familiar game of Cops and Robbers. In Zombies and Survivors, a set of zombies attempts to eat a lone survivor loose on a given graph. The zombies randomly choose their initial location, and during the course of the game, move directly toward the survivor. At each round, they move to the neighbouring vertex that minimizes the distance to the survivor; if there is more than one such vertex, then they choose one uniformly at random. The survivor attempts to escape from the zombies by moving to a neighbouring vertex or staying on his current vertex. The zombies win if eventually one of them eats the survivor by landing on their vertex; otherwise, the survivor wins. The zombie number of a graph is the minimum number of zombies needed to play such that the probability that they win is strictly greater than 1/2. We present asymptotic results for the zombie numbers of several graph families, such as cycles, hypercubes, incidence graphs of projective planes, and Cartesian and toroidal grids

    Chasing robbers on percolated random geometric graphs

    Get PDF
    In this paper, we study the vertex pursuit game of \emph{Cops and Robbers}, in which cops try to capture a robber on the vertices of a graph. The minimum number of cops required to win on a given graph GG is called the cop number of GG.  We focus on \G(n,r,p), a percolated random geometric graph in which nn vertices are chosen uniformly at random and independently from [0,1]2[0,1]^2, and two vertices are adjacent with probability pp if the Euclidean distance between them is at most rr. We present asymptotic results for the game of Cops and Robber played on \G(n,r,p) for a wide range of p=p(n)p=p(n) and r=r(n)r=r(n)
    • …
    corecore