159 research outputs found

    Localization game on geometric and planar graphs

    Get PDF
    The main topic of this paper is motivated by a localization problem in cellular networks. Given a graph GG we want to localize a walking agent by checking his distance to as few vertices as possible. The model we introduce is based on a pursuit graph game that resembles the famous Cops and Robbers game. It can be considered as a game theoretic variant of the \emph{metric dimension} of a graph. We provide upper bounds on the related graph invariant ζ(G)\zeta (G), defined as the least number of cops needed to localize the robber on a graph GG, for several classes of graphs (trees, bipartite graphs, etc). Our main result is that, surprisingly, there exists planar graphs of treewidth 22 and unbounded ζ(G)\zeta (G). On a positive side, we prove that ζ(G)\zeta (G) is bounded by the pathwidth of GG. We then show that the algorithmic problem of determining ζ(G)\zeta (G) is NP-hard in graphs with diameter at most 22. Finally, we show that at most one cop can approximate (arbitrary close) the location of the robber in the Euclidean plane

    Visibility Graphs, Dismantlability, and the Cops and Robbers Game

    Get PDF
    We study versions of cop and robber pursuit-evasion games on the visibility graphs of polygons, and inside polygons with straight and curved sides. Each player has full information about the other player's location, players take turns, and the robber is captured when the cop arrives at the same point as the robber. In visibility graphs we show the cop can always win because visibility graphs are dismantlable, which is interesting as one of the few results relating visibility graphs to other known graph classes. We extend this to show that the cop wins games in which players move along straight line segments inside any polygon and, more generally, inside any simply connected planar region with a reasonable boundary. Essentially, our problem is a type of pursuit-evasion using the link metric rather than the Euclidean metric, and our result provides an interesting class of infinite cop-win graphs.Comment: 23 page

    Hyperopic Cops and Robbers

    Full text link
    We introduce a new variant of the game of Cops and Robbers played on graphs, where the robber is invisible unless outside the neighbor set of a cop. The hyperopic cop number is the corresponding analogue of the cop number, and we investigate bounds and other properties of this parameter. We characterize the cop-win graphs for this variant, along with graphs with the largest possible hyperopic cop number. We analyze the cases of graphs with diameter 2 or at least 3, focusing on when the hyperopic cop number is at most one greater than the cop number. We show that for planar graphs, as with the usual cop number, the hyperopic cop number is at most 3. The hyperopic cop number is considered for countable graphs, and it is shown that for connected chains of graphs, the hyperopic cop density can be any real number in $[0,1/2].

    Localization Game on Geometric and Planar Graphs

    Get PDF
    The main topic of this paper is motivated by a localization problem in cellular networks. Given a graph G we want to localize a walking agent by checking his distance to as few vertices as possible. The model we introduce is based on a pursuit graph game that resembles the famous Cops and Robbers game. It can be considered as a game theoretic variant of the metric dimension of a graph. We provide upper bounds on the related graph invariant ζ(G), defined as the least number of cops needed to localize the robber on a graph G, for several classes of graphs (trees, bipartite graphs, etc). Our main result is that, surprisingly, there exists planar graphs of treewidth 2 and unbounded ζ(G). On a positive side, we prove that ζ(G) is bounded by the pathwidth of G. We then show that the algorithmic problem of determining ζ(G) is NP-hard in graphs with diameter at most 2. Finally, we show that at most one cop can approximate (arbitrary close) the location of the robber in the Euclidean plane
    corecore