358 research outputs found

    Stabilization of systems with asynchronous sensors and controllers

    Full text link
    We study the stabilization of networked control systems with asynchronous sensors and controllers. Offsets between the sensor and controller clocks are unknown and modeled as parametric uncertainty. First we consider multi-input linear systems and provide a sufficient condition for the existence of linear time-invariant controllers that are capable of stabilizing the closed-loop system for every clock offset in a given range of admissible values. For first-order systems, we next obtain the maximum length of the offset range for which the system can be stabilized by a single controller. Finally, this bound is compared with the offset bounds that would be allowed if we restricted our attention to static output feedback controllers.Comment: 32 pages, 6 figures. This paper was partially presented at the 2015 American Control Conference, July 1-3, 2015, the US

    Convergence of controllers designed using state space methods

    Get PDF
    The convergence of finite dimensional controllers for infinite dimensional systems designed using approximations is examined. Stable coprime factorization theory is used to show that under the standard assumptions of uniform stabilizability/detectability, the controllers stabilize the original system for large enough model order. The controllers converge uniformly to an infinite dimensional controller, as does the closed loop response

    Regulation and robust stabilization: a behavioral approach

    Get PDF
    In this thesis we consider a number of control synthesis problems within the behavioral approach to systems and control. In particular, we consider the problem of regulation, the H! control problem, and the robust stabilization problem. We also study the problems of regular implementability and stabilization with constraints on the input/output structure of the admissible controllers. The systems in this thesis are assumed to be open dynamical systems governed by linear constant coefficient ordinary differential equations. The behavior of such system is the set of all solutions to the differential equations. Given a plant with its to-be-controlled variable and interconnection variable, control of the plant is nothing but restricting the behavior of the to-be-controlled plant variable to a desired subbehavior. This restriction is brought about by interconnecting the plant with a controller (that we design) through the plant interconnection variable. In the interconnected system the plant interconnection variable has to obey the laws of both the plant and the controller. The interconnected system is also called the controlled system, in which the controller is an embedded subsystem. The interconnection of the plant and the controller is said to be regular if the laws governing the interconnection variable are independent from the laws governing the plant. We call a specification regularly implementable if there exists a controller acting on the plant interconnection variable, such that, in the interconnected system, the behavior of the to-becontrolled variable coincides with the specification and the interconnection is regular. Within the framework of regular interconnection we solve the control problems listed in the first paragraph. Solvability conditions for these problems are independent of the particular representations of the plant and the desired behavior.

    Optimal Control with Information Pattern Constraints

    Get PDF
    Despite the abundance of available literature that starts with the seminal paper of Wang and Davison almost forty years ago, when dealing with the problem of decentralized control for linear dynamical systems, one faces a surprising lack of general design methods, implementable via computationally tractable algorithms. This is mainly due to the fact that for decentralized control configurations, the classical control theoretical framework falls short in providing a systematic analysis of the stabilization problem, let alone cope with additional optimality criteria. Recently, a significant leap occurred through the theoretical machinery developed in Rotkowitz and Lall, IEEE-TAC, vol. 51, 2006, pp. 274-286 which unifies and consolidates many previous results, pinpoints certain tractable decentralized control structures, and outlines the most general known class of convex problems in decentralized control. The decentralized setting is modeled via the structured sparsity constraints paradigm, which proves to be a simple and effective way to formalize many decentralized configurations where the controller feature a given sparsity pattern. Rotkowitz and Lall propose a computationally tractable algorithm for the design of H2 optimal, decentralized controllers for linear and time invariant systems, provided that the plant is strongly stabilizable. The method is built on the assumption that the sparsity constraints imposed on the controller satisfy a certain condition (named quadratic invariance) with respect to the plant and that some decentralized, strongly stablizable, stabilizing controller is available beforehand. For this class of decentralized feedback configurations modeled via sparsity constraints, so called quadratically invariant, we provided complete solutions to several open problems. Firstly, the strong stabilizability assumption was removed via the so called coordinate free parametrization of all, sparsity constrained controllers. Next we have addressed the unsolved problem of stabilizability/stabilization via sparse controllers, using a particular form of the celebrated Youla parametrization. Finally, a new result related to the optimal disturbance attenuation problem in the presence of stable plant perturbations is presented. This result is also valid for quadratically invariant, decentralized feedback configurations. Each result provides a computational, numerically tractable algorithm which is meaningful in the synthesis of sparsity constrained optimal controllers

    Feedback stabilization, a geometric view

    Get PDF

    Sensor blending - a geometric view

    Get PDF
    corecore