3 research outputs found

    Low dielectric constant fluorocarbon films containing silicon by plasma enhanced chemical vapor deposition

    Get PDF
    Use of low relative dielectric constant (low-k) material as an interlayer dielectric is among important approaches to reduce the RC time delay in high performance ultra-large-scale integrated circuits. Copper metallization is another approach besides the use of low-k material, in reducing the RC delay time, because of its well-known characteristics of low resistivity and high electromigration resistance. Fluorocarbon films containing silicon (SiCF) have been developed in this work for low-k interlayer dielectric applications below 50 nm linewidth technology. The films were prepared by plasma enhanced chemical vapor deposition (PECVD) using gas precursors of tetrafluoromethane as the source of active species and disilane (5 % by volume in helium) as both an active species source and a reducing agent to control the ratio of fluorine to carbon in the films. The basic properties for these low-k interlayer dielectric films were studied along with characterization of their fabrication process. Electrical, mechanical, chemical and thermal properties were evaluated including dielectric constant, electrical field strength, surface planarity, residual stress, hardness, chemical bond structure, and shrinkage upon heat treatment. Deposition process conditions were optimized for film thermal stability while maintaining a relative dielectric constant value as low as 2.0. The average breakdown field strength of the SiCF films was 4.74 MV/cm and its optical energy gap was in the range of 2.2 to 2.4 eV. The hardness and residual stress in the SiCF films deposited under the optimized conditions were respectively measured to be in the range of 1.4 to 1.78 GPa and in the range of 11.6 to 23.2 MPa of compressive stress. For integrated microsystems as well as for ULSI circuits, surface modification of SiCF films by wet chemical treatment and by X-ray irradiation were examined to facilitate copper metallization. Feasibility of copper deposition by recently developed electroless techniques is discussed in conjunction with the studies utilizing wet chemical modification of the film surface. The effect of X-ray irradiation on the chemical structure of the films is also discussed. Additionally, means for selective surface modification of the films are introduced by exposing the films through an X-ray mask

    Synthesis and Study of Chemo-Hydrothermally Derived Water-Soluble Chitosan and Chiosan-Metal Oxide Composites

    Get PDF
    Chitosan (CS) is a man-made sugar based biopolymer derived from chitin, the second most abundant natural polymer after cellulose. Chitin is sourced from crustacean species such as shrimps and crabs. The chemical structure of chitin contains N-Acetyl D-glucosamine monomer units which forms CS upon deacetylation. In CS, ?-(1-4) linked D-glucosamine units are randomly distributed. Approximately 75% - 80% sugar units contains primary amine groups in commercially available low molecular weight CS. Biodegradability, low toxicity, mucoadhesive and transfecting properties of CS polymer are attractive for applications as oral and nasal drug delivery systems. Chitosan polymer is water insoluble at neutral pH. To solubilize CS, dilute mineral acid (such as hydrochloric acid and nitric acid) or organic acid (such as acetic acid) is often used. CS contains both hydroxyl and primary amine groups in its structure. In acidic solution, the amine functional groups become protonated (positively charged). Positively charged CS remains stable only in low pH condition due to electrostatic repulsion of charged polymer segments. Therefore, by using a suitable anionic (negatively charged) cross-linker, stable CS particles (such as nanoparticles and microspheres) can be prepared. This is popularly known as ionic gelation method. Extensive studies have been done on the synthesis of drug loaded CS particles where particle integrity is maintained by ionic gelation using tripolyphosphate (TPP, an anionic cross-linker). Drug encapsulated CS-TPP composite particles are shown to maintain biodegradability and biocompatibility. The CS-TPP composite particles exhibits very limited dispersibility at neutral pH conditions specifically in neutral buffered conditions. A number of biomedical applications (including systemic drug formulations) however demands buffer-stable CS composite particles for achieving optimal therapeutic outcome. To overcome the above dispersibility issues, CS polymer and CS particles units have been chemically modified using water soluble motifs (such as water soluble polymer or ligands). This approach is very cumbersome and usually involves multiple purification steps. Chemical modification of natural CS chain introduces risks of compromising biodegradability and biocompatibility. Therefore, there is a strong need for developing a straightforward method of making water soluble CS and CS particles. Chapter 1 of this dissertation presents an overview of the CS polymer, various applications of CS polymers, methods of making CS polymers and CS particles, current limitations of synthesis methods for preparing stable chitosan particles at neutral pH conditions and finally delineates the scope of the proposed research work. Chapter 2 describes development of chemo-hydrothermal synthesis method for producing water soluble CS polymer and water dispersible CS composite particles. In this method, a chemical (depolymerizing agent) is used to treat CS polymer in a hydrothermal (high temperature and high pressure) condition. Two types of depolymerizing agents have been used, an inorganic acid (e.g. hydrochloric acid, HCl) and a bicarboxylic organic acid (e.g. tartaric acid, TA). In both cases, 100% depolymerized CS polymer was obtained. Chemical characteristics of the depolymerized CS were comparable to acid solubilized CS. CS polymer exhibits weak fluorescence. Interestingly, hydrothermally depolymerized CS shows strong fluorescence properties irrespective of the nature of depolymerizing agent used. TA not only depolymerized CS but also formed CS-TA composite particulate structures in solution via self-assembly. The CS-TA composite particles are stable in a wide pH range from 5 to 11. Detailed spectroscopic and microscopic studies have been done to understand the basic mechanism of particle formation and increase in fluorescence properties (i.e. structure-property relationship). Usefulness of CS-TA in solubilizing water-insoluble cargos (such as fluorescein isothiocyanate, FITC) has been demonstrated. Chapter 3 is focused on hydrothermal synthesis of mixed-valence copper (Cu) oxide loaded CS-TA composite particles and their characterization. Crystalline Cu oxide nanoparticles were coated with the CS-TA layer. Water dispersibility of Cu oxide greatly improved upon coating with CS-TA material. To demonstrate catalytic activity of Cu-oxide loaded CS-TA film in sequestering carbon dioxide (CO2), an electrochemical setup was used. Electrochemical reduction of CO2 was successfully demonstrated. It was observed that CS-TA environment not only maintained catalytic properties of Cu oxide but also allowed solution processing of Cu-oxide film onto the electrode surface. Chapter 4 discusses a convenient method of making monodispersed water dispersible Cu loaded chitosan nanoparticles (Cu-CS) using HCl depolymerized CS polymer. The purpose of this study was to investigate if there was any improvement in antibacterial properties of Cu-CS nanoparticles prepared using hydrothermally treated CS polymer. Interestingly, it was observed that the antibacterial efficacy of Cu was not compromised in Cu-CS nanoparticles. Moreover, the materials exhibited improvement in antibacterial efficacy against both Gram-negative and Gram-positive bacteria species. A plausible mechanism has been proposed to explain antibacterial results. Chapter 5 summarizes major findings of this dissertation research and presents future research directions

    Electrical properties of various single-wall carbon nanotube networks

    Get PDF
    This thesis investigates conduction mechanisms of covalently and non covalently functionalised single wall carbon nanotube (SWCNT) networks. Unlike previous strategies where diamines were used, a novel route to covalently bridge SWCNTs by organic molecular linkers is proposed. The bridging relies on using modified Sonogashira and Ullmann couplings, which have the advantage of using spectroscopic evidence to ascertain the success of the bridging. Platinum-enriched SWCNTs were produced by coordinating Pt to pyridine ligands grafted on SWCNTs. Networks of covalently bridged SWCNTs, Pt-enriched SWCNTs and their SWCNT precursors were fabricated by vacuum filtration. In addition to these networks, networks of non covalent ly functionalised SWCNTs were built up using layer-bylayer (LbL) deposition. This second approach required the wrapping up of SWCNTs by ionic surfactants to exploit their electrostatic interactions. Electrical properties, such as current- voltage and the current dependence on temperature and electrode separation are discussed for both filtered SWCNT and SWCNT LbL networks. Combined analyses of these characteristics were carried out to identify dominant conduction mechanisms. In this study, a modified quantum tunnelling model was proposed to best describe the in-plane electrical behaviour of the filtered SWCNT networks. As for SWCNT LbL networks, the in-plane conduction was shown to be governed by the Poole-Frenkel mechanisms while direct tunnelling dominates the out-of-plane conduction. Furthermore, the charge storage capacity of cut-SWCNT LbL networks integrated into metal- insulator-semiconductor devices are discussed in view of organic memory device applications
    corecore