3 research outputs found

    ํ™”ํ•™์ /์ „๊ธฐํ™”ํ•™์  ์ œ์–ด์™€ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์„ ์ด์šฉํ•œ ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ ์‹œ์Šคํ…œ์—์„œ์˜ ํด๋ฆฌ์•Œํ‚ฌ๋ Œ๊ธ€๋ฆฌ์ฝœ ๊ธฐ๋ฐ˜ ์–ต์ œ์ œ ๋ฐ ํ• ๋กœ๊ฒํ™” ์ด์˜จ ๋†๋„์˜ ์„ ํƒ์  ์ „๊ธฐํ™”ํ•™ ๋ชจ๋‹ˆํ„ฐ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2021.8. ๊น€์žฌ์ •.๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ์กฐ์˜ ํ™”ํ•™์  ์กฐ์„ฑ์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๊ฒƒ์€ ์žฅ๊ธฐ์ ์ด๊ณ  ๋ฐ˜๋ณต์ ์ธ ๋„๊ธˆ ์ž‘์—… ์ค‘์— ๋„๊ธˆ์กฐ์˜ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ํ•ต์‹ฌ ์š”์†Œ์ด๋‹ค. ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ ๊ณต์ •์—์„œ ์ฒจ๊ฐ€์ œ์˜ ๋†๋„๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ์ง€๋งŒ ์ฒจ๊ฐ€์ œ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ๋Œ€์ƒ ์ฒจ๊ฐ€์ œ์˜ ๋…๋ฆฝ์ ์ธ ๊ฑฐ๋™์„ ๊ด€์ฐฐํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Š” ๋งค์šฐ ๋„์ „์ ์ด๋‹ค. ์ฒจ๊ฐ€์ œ์— ๋Œ€ํ•œ ๋ชจ๋‹ˆํ„ฐ๋ง์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์ „๊ธฐํ™”ํ•™ ๋ถ„์„์œผ๋กœ ์ง„ํ–‰๋œ๋‹ค. ์ „๊ธฐํ™”ํ•™ ๋ถ„์„์€ ๊ฒฝ์ œ์ ์ด๊ณ  ์ ‘๊ทผ์„ฑ์ด ๋น ๋ฅด๋ฉฐ ํ•œ ๋ฒˆ์— ๋งŽ์€ ์ •๋ณด๋ฅผ ์ทจํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์œผ๋ฉฐ ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ ์‹œ์Šคํ…œ์˜ ์ฒจ๊ฐ€์ œ์™€ ๊ฐ™์ด ์ „๊ธฐํ™”ํ•™ ๋ฐ˜์‘์— ์ง์ ‘ ์ฐธ์—ฌํ•˜์ง€ ์•Š๋Š” ํ™”ํ•™์ข…์˜ ๊ฒฝ์šฐ, ๋ถ„์„ ์‹ ํ˜ธ๋กœ๋ถ€ํ„ฐ ์ง์ ‘์ ์œผ๋กœ ์–‘์ ์ธ ์ •๋ณด๋ฅผ ์–ป๊ธฐ๊ฐ€ ์–ด๋ ต์ง€๋งŒ ์ฒจ๊ฐ€์ œ์˜ ๋†๋„์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋Š” ๊ตฌ๋ฆฌ ์ด์˜จ์˜ ์ „๊ธฐํ™”ํ•™ ํ™˜์› ์†๋„๋ฅผ ํ†ตํ•ด ๊ฐ„์ ‘์ ์œผ๋กœ ๊ทธ ์–‘์  ์ •๋ณด๋ฅผ ์ถ”์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ์ „๊ธฐํ™”ํ•™ ๋ฐ˜์‘์— ์ง์ ‘์ ์œผ๋กœ ์ฐธ์—ฌํ•˜์ง€ ์•Š๋Š” ํ™”ํ•™์ข…์— ๋Œ€ํ•ด์„œ๋„ ๊ทธ ์–‘์  ์ •๋ณด์— ๋Œ€ํ•œ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ ์‹œ์Šคํ…œ์ด ๋งŽ์€ ์ฒจ๊ฐ€์ œ๋ฅผ ํฌํ•จํ•˜๋Š” ๊ฒฝ์šฐ, ๊ฐ ์ฒจ๊ฐ€์ œ๋“ค์ด ๊ตฌ๋ฆฌ ์ด์˜จ์˜ ํ™˜์› ์†๋„์— ๋ณตํ•ฉ์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฏ€๋กœ ์ „๊ธฐํ™”ํ•™ ๋ถ„์„์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹ ํ˜ธ๊ฐ€ ์–ด๋–ค ์ฒจ๊ฐ€์ œ๋กœ ์ธํ•œ ๊ฒƒ์ธ์ง€๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ™”ํ•™์  ์ œ์–ด์™€ ์ „๊ธฐํ™”ํ•™์  ์ œ์–ด๋ฅผ ํ†ตํ•ด ํ‘œ์  ์ฒจ๊ฐ€์ œ์˜ ์„ ํƒ๋„๋ฅผ ๋†’์ด๋Š” ์ „๊ธฐํ™”ํ•™ ์ธก์ • ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ๋‹ค๋ฃฌ๋‹ค. ๋ฌด๊ธฐ ํ‰ํƒ„์ œ์ธ ์š”์˜ค๋“œํ™” ์ด์˜จ(Iโ€“)์€ ์œ ๊ธฐ๋ฌผ๊ณผ ๊ฐ™์ด ์ „ํ˜€ ๋‹ค๋ฅธ ์„ฑ์งˆ์˜ ๋ถ„ํ•ด ์‚ฐ๋ฌผ์„ ๋งŒ๋“ค์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์—์„œ ์šฐ์ˆ˜ํ•œ ์ฒจ๊ฐ€์ œ๋กœ ํ‰๊ฐ€๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ ๊ณผ์ •์—์„œ ์š”์˜ค๋“œํ™” ์ด์˜จ์€ ๊ตฌ๋ฆฌ 1๊ฐ€ ์ด์˜จ(Cu+)๊ณผ์˜ ๋ฐ˜์‘๊ณผ ์‚ฐํ™” ๋ฐ˜์‘ ๋ฐ ๋ฌผ๋ฆฌ์  ํ•จ์ž…์— ์˜ํ•ด ์†Œ๋ชจ๋˜์—ˆ๋‹ค. ์š”์˜ค๋“œํ™” ์ด์˜จ์˜ ๊ฐ์†Œ๋Š” ๋„๊ธˆ์กฐ์˜ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๊ฐ€์ ธ์˜ค๋Š” ๋ฐ˜๋ฉด ์ฃผ์š” ๋ถ€์‚ฐ๋ฌผ์ธ ์š”์˜ค๋“œ(I2)์™€ ์š”์˜ค๋“œํ™” ๊ตฌ๋ฆฌ(CuI)๋Š” ๋„๊ธˆ์กฐ์˜ ์‹ค๋ฆฌ์ฝ˜ ๊ด€ํ†ต ์ „๊ทน(through-silicon via, TSV) ์ถฉ์ง„ ์„ฑ๋Šฅ์— ๊ฑฐ์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜๋‹ค. Cyclic voltammetry stripping (CVS) ๋ถ„์„์„ ํ†ตํ•ด ์š”์˜ค๋“œํ™” ๋†๋„๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ธฐ ์œ„ํ•ด ์š”์˜ค๋“œํ™” ์ด์˜จ์˜ ์ „๊ธฐํ™”ํ•™์  ๋ฐ˜์‘์„ ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์—์„œ ์กฐ์‚ฌํ•˜์˜€์œผ๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ์š”์˜ค๋“œํ™” ์ด์˜จ์ด ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ ์†๋„๋ฅผ ์–ต์ œํ•˜๋Š” ์ •๋„๊ฐ€ ์š”์˜ค๋“œํ™” ์ด์˜จ์˜ ๋ฌผ์งˆ ์ „๋‹ฌ๊ณผ ์Œ๊ทน ์ „์œ„์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง„๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ดํ›„์˜ effective coverage ๋ถ„์„์€ ์š”์˜ค๋“œํ™” ์ด์˜จ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ CuI๊ฐ€ ์ฃผ์š” ์–ต์ œ์ œ๋กœ ์ž‘์šฉํ•˜๋ฉฐ, ์š”์˜ค๋“œํ™” ์ด์˜จ์˜ ์–ต์ œ๊ฐ€ ์Œ์˜ ํฌํ…์…œ์—์„œ ์•ฝํ•ด์ง์„ ๋ณด์—ฌ์ค€๋‹ค. ์ตœ์ ํ™”๋œ ์กฐ๊ฑด์—์„œ ์ˆ˜ํ–‰๋œ ๋ฐ˜์‘ ๊ณก์„  ๋ถ„์„์„ ํ†ตํ•ด ๋‹ค๋ฅธ ์ฒจ๊ฐ€์ œ์˜ ๋†๋„์— ๊ด€๊ณ„์—†์ด ์‹ค์ œ ๋†๋„์™€ ์ธก์ •๋œ ๋†๋„ ์‚ฌ์ด์˜ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ์กฐ์—์„œ ์š”์˜ค๋“œํ™” ๋†๋„๋ฅผ ์ง์ ‘ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€๋‹ค. Bis-(3-sulfopropyl)-disulfide (SPS)๋Š” ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๋Œ€ํ‘œ์ ์ธ ๊ฐ€์†์ œ๋กœ polyalkyl glycol (PAG)์˜ ์–ต์ œ ์ž‘์šฉ์„ ๋ฐฉํ•ดํ•˜๋ฉฐ, ๋”ฐ๋ผ์„œ SPS์˜ ์กด์žฌ๋Š” PAG ๋†๋„ ์ธก์ •์— ์žˆ์–ด์„œ signal-to-noise ratio (SNR)๋ฅผ ๋‚ฎ์ถ”๋Š” ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚จ๋‹ค. SPS์˜ ์–ต์ œ ๋ฐฉํ•ด ์ž‘์šฉ์„ ์ค„์ด๋ฉด์„œ PAG ๋†๋„๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๊ฒฉ๋ ฌํ•œ ๋ฌผ์งˆ ์ „๋‹ฌ ํ™˜๊ฒฝ์—์„œ ๊ฐ€์†์ œ์˜ ์ž‘์šฉ์„ ์ €ํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ์š”์˜ค๋“œํ™” ์ด์˜จ์„ ์ „์ฒ˜๋ฆฌ์ œ๋กœ ๋„์ž…ํ•˜์˜€๋‹ค. CVS ๋ฐฉ๋ฒ•์„ ๋ชจ๋‹ˆํ„ฐ๋ง ๋„๊ตฌ๋กœ ์‚ฌ์šฉํ•  ๋•Œ ํ‘œ์  ์šฉ์•ก ๋‚ด ๊ทน์†Œ๋Ÿ‰์˜ SPS๋„ PAG ๋†๋„ ์ธก์ •์— ์ƒ๋‹นํžˆ ํฐ ์˜ค์ฐจ๋ฅผ ์œ ๋ฐœํ•˜์˜€๋‹ค. ์š”์˜ค๋“œํ™” ์ด์˜จ์€ SPS์˜ ๋†๋„์— ๊ด€๊ณ„์—†์ด, SPS๊ฐ€ ๋งค๊ฐœํ•˜๋Š” ํ‘œ๋ฉด passivation ์ธต์˜ ํŒŒ๊ดด๋ฅผ ์ €ํ•ดํ•˜์—ฌ SPS์˜ ๊ฐ„์„ญ ์—†์ด PAG ๋†๋„๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ–ˆ๋‹ค. ์ด๋Š” ๋‹ค์–‘ํ•œ ์ „๊ธฐํ™”ํ•™ ๋ถ„์„ ๋ฐ ํ‘œ๋ฉด ๋ถ„์„์„ ํ†ตํ•ด ์ „๊ทน ํ‘œ๋ฉด์—์„œ CuI๊ฐ€ ํ˜•์„ฑ๋˜๋ฉด์„œ PAG ์™€ ๋ณตํ•ฉ์ฒด๋ฅผ ํ˜•์„ฑํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ํ˜•์„ฑ๋˜๋Š” ์–ต์ œ ์ธต์ด ๊ธฐ์กด์˜ ์—ผํ™” ์ด์˜จ(Clโ€“)๊ณผ ํ•จ๊ป˜ ๋งŒ๋“ค์–ด์ง€๋Š” ์–ต์ œ ์ธต์— ๋น„ํ•ด ๊ฐ•ํ•˜๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ์ถ”์ •๋˜์—ˆ๋‹ค. ์š”์˜ค๋“œํ™” ์ด์˜จ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ˆ˜์ •๋œ CVS ๋ถ„์„์ด ์ œ์•ˆ๋˜์—ˆ๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ์š”์˜ค๋“œํ™” ์ด์˜จ์„ ์ฒจ๊ฐ€ํ•˜๋ฉด ๋ถ„์„์•ก ๋‚ด SPS์˜ ๋†๋„์— ๊ด€๊ณ„์—†์ด ์‹ค์ œ ๊ฐ’๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ๊ฒฐ์ •๋œ PAG ๋†๋„๋ฅผ ์‚ฐ์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋จธ์‹  ๋Ÿฌ๋‹์€ ๋ฐ์ดํ„ฐ์—์„œ๋ถ€ํ„ฐ ์ปดํ“จํ„ฐ ์Šค์Šค๋กœ๊ฐ€ ํ•™์Šตํ•˜๋„๋ก ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•˜๋Š” ๊ธฐ์ˆ ๋กœ ํ†ต๊ณ„์  ๋ชจ๋ธ์„ ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ์™€ ์ปดํ“จํ„ฐ์˜ ์—ฐ์‚ฐ ๋Šฅ๋ ฅ์„ ํ†ตํ•ด ์ตœ์ ํ™”ํ•˜์—ฌ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋จธ์‹  ๋Ÿฌ๋‹์€ ์–ด๋–ป๊ฒŒ ์ž‘๋™๋˜๋Š”์ง€ ์•„์ง ์ •ํ™•ํžˆ ๋ฐํ˜€์ง€์ง€ ์•Š์€ ์‹œ์Šคํ…œ์˜ ๋ฌธ์ œ๋ฅผ ์‹œ์Šคํ…œ ์ž์ฒด์˜ ์ž‘๋™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ, ์‹œ์Šคํ…œ์œผ๋กœ๋ถ€ํ„ฐ ๋งŒ๋“ค์–ด์ง€๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์‹œ์Šคํ…œ์— ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ•ด๋„ ์ด๋ฅผ ํ•™์Šตํ•˜์—ฌ ์ด๋Ÿฌํ•œ ๋ณ€ํ™”์— ์Šค์Šค๋กœ ์ ์‘์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์ „๊ธฐํ™”ํ•™ ๋ถ„์„์˜ ์žฅ์ ๊ณผ ๋จธ์‹  ๋Ÿฌ๋‹์„ ๊ฒฐํ•ฉํ•  ๋•Œ ์‹œ์Šคํ…œ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์ „๊ธฐํ™”ํ•™ ๋ฐ์ดํ„ฐ ํ•™์Šต์„ ํ†ตํ•ด ์œ ์˜๋ฏธํ•œ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ ๋ฐ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ํ†ตํ•ด ์ „๊ธฐํ™”ํ•™ ์‹œ์Šคํ…œ์˜ ์ž‘๋™ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ธฐ๋Œ€๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค. Clโ€“๋Š” ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ ๊ณผ์ •์—์„œ ๊ธฐํŒ ํ‘œ๋ฉด์— ๋จผ์ € ํก์ฐฉํ•˜์—ฌ polyethylene glycol (PEG)์˜ ๊ฐ•ํ•œ ํก์ฐฉ์„ ์œ ๋„ํ•˜๋Š” ๊ฒฌ์ธ ์—ญํ• ์„ ํ•˜๋ฉฐ PEG์™€ Clโ€“์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ๊ตฌ๋ฆฌ ์ด์˜จ์˜ ํ™˜์›์— ํ•„์š”ํ•œ ์—๋„ˆ์ง€๋ฅผ ์ฆ๊ฐ€์‹œ์ผœ ๊ทธ ์†๋„๋ฅผ ๋Šฆ์ถ”๋ฉฐ ๋‘˜์˜ ์ƒํ˜ธ ๋ณด์™„์ ์ธ ํšจ๊ณผ๋กœ ์ธํ•ด ๊ฐ๊ฐ์˜ ๋†๋„๋ฅผ ์„ ํƒ์ ์œผ๋กœ ์ธก์ •ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ต๋‹ค. PEG3350๊ณผ Clโ€“๋กœ ๊ตฌ์„ฑ๋œ ์‹œ์Šคํ…œ์—์„œ๋Š” ๋‹จ์ˆœํ•œ ์ „๊ธฐํ™”ํ•™ ๋ถ„์„์„ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ์™€ ์ธ๊ณต ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ํ†ตํ•ด์„œ๋„ ์‰ฝ๊ฒŒ ๋†๋„ ์ธก์ •์ด ๊ฐ€๋Šฅํ–ˆ์œผ๋ฉฐ ์ด๋Š” PEG3350๊ณผ Clโ€“์˜ ๋›ฐ์–ด๋‚œ cyclic voltammetry (CV) ์‘๋‹ต์„ฑ์œผ๋กœ ์ธํ•œ ๊ฒƒ์ด๋‹ค. ํ•˜์ง€๋งŒ PEG200, PEG1500, PEG3350๊ณผ Clโ€“์™€ ๊ฐ™์ด ๋‹ค์–‘ํ•œ ๋ถ„์ž๋Ÿ‰์˜ PEG๋ฅผ ํฌํ•จํ•œ ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ ์‹œ์Šคํ…œ์—์„œ๋Š” ๊ฐ™์€ ์ „๊ธฐํ™”ํ•™ ๋ถ„์„๊ณผ ๋ชจ๋ธ์„ ์ ์šฉํ–ˆ์„ ๋•Œ ๋†๋„ ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ๋–จ์–ด์กŒ๋‹ค. ์ด๋Š” Clโ€“๊ฐ€ ์ „๊ทน ํ‘œ๋ฉด์— PEG๋ฅผ ์œ„ํ•œ ํก์ฐฉ ์ ์œผ๋กœ ์ž‘์šฉํ•˜๋Š” ์ƒํ™ฉ์—์„œ ์ œํ•œ๋œ ์ˆ˜์˜ Clโ€“๋ฅผ ๋‘๊ณ  PEG ์‚ฌ์ด์—์„œ ํก์ฐฉ ๊ฒฝ์Ÿ์ด ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋ฉฐ, ํŠนํžˆ PEG200์˜ ๊ฒฝ์šฐ ๋ถ„์ž๋Ÿ‰์ด ์ž‘์•„ ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋†๋„ ์˜ˆ์ธก์˜ ์„ฑ๋Šฅ์ด ๋–จ์–ด์กŒ๋‹ค. PEG์˜ ํก์ฐฉ์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด CV ๋ถ„์„์˜ vertex ์ „์œ„๋ฅผ โ€“0.4 V์—์„œ โ€“0.2 V๋กœ ๋ณ€ํ™˜ํ•˜์˜€์œผ๋ฉฐ ์š”์˜ค๋“œํ™” ์ด์˜จ ์ „์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด PEG200์˜ CV ์‘๋‹ต์„ฑ์„ ํš๊ธฐ์ ์œผ๋กœ ์ฆ๋Œ€์‹œ์ผฐ๋‹ค. ์ด๋Š” ์š”์˜ค๋“œํ™” ์ด์˜จ์˜ ๋„์ž…์ด ๊ตฌ๋ฆฌ ์ „ํ•ด ๋„๊ธˆ ์ด์™ธ์— ๊ตฌ๋ฆฌ ์ด์˜จ์˜ ํ™˜์›๊ณผ ๊ทธ ๊ณผ์ •์—์„œ ํ˜•์„ฑ๋˜๋Š” CuI์˜ ์‚ฐํ™”์™€ ๊ฐ™์ด ๋‹ค์–‘ํ•œ ๊ตฌ๋ฆฌ-์š”์˜ค๋“œ ์ „๊ธฐํ™”ํ•™ ๋ฐ˜์‘๊ณ„๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋ฉฐ ์ด ๋ณต์žกํ•œ ๋ฐ˜์‘์— PEG๊ฐ€ ๋ถ„์ž๋Ÿ‰๋ณ„๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ์ถ”์ •๋œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ „๊ธฐํ™”ํ•™์  ์ œ์–ด์™€ ์š”์˜ค๋“œํ™” ์ด์˜จ ํ™”ํ•™์  ์ „์ฒ˜๋ฆฌ๋ฅผ ๋„์ž…ํ•˜์—ฌ PEG์™€ Clโ€“์˜ ๋†๋„ ๋ถ„์„์— ๋Œ€ํ•œ SNR์„ ํš๊ธฐ์ ์œผ๋กœ ์ค„์˜€์œผ๋ฉฐ ์ธ๊ณต ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค.Accurate monitoring of an electroplating bathโ€™s chemical balance is a key factor for maintaining its performance during a long-term plating operation. Monitoring the concentration of additives in the copper (Cu) electroplating process is becoming important, but is challenging, because the interaction between additives makes it problematic to observe the independent behavior of a target additive. Monitoring of additives is performed by electrochemical analysis, which provides massive information from the system at once. In the case of chemical species which do not directly participate in the faradaic process of the electrochemical reaction, such as additives in the Cu electrochemical deposition system, it is difficult to obtain quantitative information precisely from the signal in an electrochemical system. Instead, the quantitative information, such as a concentration, of an additive could be determined through the change of the rate of electrochemical reaction involving the metal ion. This approach exhibits the feasibility that quantitative information could be determined even for electrochemically inactive chemical species, but when the Cu electrochemical deposition system contains various types of additives, it becomes challenging to estimate which additive affects the electrochemical signal generated in the analysis since each additive has a complex effect on the rate of cupric ion (Cu2+) and cuprous ion (Cu+) reduction. This dissertation covers various methods for electrochemical analyses which increases the selectivity from the concentration of a target additive through chemical and electrochemical control. Iodide ion (Iโ€“), an inorganic leveler, has been evaluated as an excellent additive in that it does not produce any byproducts with completely different chemical properties like organic additives. During the operation of plating, Iโ€“ was consumed via the reaction with Cu+ (Cu+ + I โ†’ CuI), oxidation reactions (2Iโ€“ โ†’ I2 + 2e and 3Iโ€“ โ†’ I3โ€“ + 3e), as well as a physical incorporation. The Iโ€“ concentration decrease resulted in a degradation of the bath, while the major byproducts (CuI and I2) rarely influences on the bath performance for through-silicon via (TSV) filling. In order to monitor the Iโ€“ concentration by cyclic voltammetry stripping (CVS) analysis, the electrochemical response of Iโ€“ was examined at various conditions. Iโ€“ suppressed the Cu electrodeposition rate; this response was dependent on the mass transport of Iโ€“ and the applied potential of the working electrode. A subsequent effective coverage analysis revealed that not only Iโ€“ but also copper iodide (CuI) was a key inhibitor, demonstrating that the inhibition of Iโ€“ becomes weaker at a negative potential. With a responsive curve (RC)-CVS analysis conducted at an optimized condition, a linear relationship between the real and measured concentrations could be found, irrespective of other additivesโ€™ concentrations. The method suggested in this dissertation enabled the direct monitoring of the Iโ€“ concentration in a Cu plating bath. Bis-(sulfopropyl)-disulfide (SPS) is a representative accelerator used in Cu electrodeposition and interferes with the inhibition of poly(alkylene) glycol (PAG). Therefore, the presence of SPS causes a problem of lowering the signal-to-noise (SNR) in PAG concentration measurement. In order to disrupt the anti-suppression action of SPS accelerator to monitor the concentrations of PAG suppressor, Iโ€“ was introduced as a chemical pretreatment agent, based on its inhibiting action to accelerator in a vigorous mass-transport environment. Even a small amount of SPS in target solutions interfered with the determination of PAG concentration, when using the CVS method as a monitoring tool. Iโ€“ could hinder the SPS-mediated breakdown of the surface passivation layer, even in higher concentration of SPS, allowing selective determination of PAG, free from interference by SPS. This is presumed to be due to the formation of the ionic compound, CuI with Iโ€“-involved PAG complex on the electrode surface. By introducing Iโ€“, modified CVS analysis was repeated, and the results revealed that adding Iโ€“ totally suppressed the behavior of SPS, and yielded determined PAG concentrations that were similar to the actual values. Machine learning allows a computer to learn from data by itself, enabling a system to respond based on numerous data and computing power. The superiority of machine learning comes from the building a model based on the data and facilitating the solution itself to adapt to a change raised in the system. When combining the superiority of electrochemical analysis with machine learning, it seems possible to make a model which could extract quantitative information by learning electrochemical data on system variables. Chloride ion (Clโ€“) adsorbs on the substrate during the Cu electrodeposition and acts as a traction to induce strong adsorption of polyethylene glycol (PEG), inhibiting the physical access of Cu2+ to the substrate. This PEG-Clโ€“ inhibition layer increases the energy required for Cu2+/Cu+ reduction and slows down the rate of Cu electrochemical deposition, and it is very challenging to determine each concentration selectively due to the complementary effects of the two additives. In the system composed of PEG3350 and Clโ€“, it was possible to easily predict the concentration through data collected in a simple electrochemical analysis and artificial neural network (ANN) model due to the excellent analytical responses of PEG3350 and Clโ€“ in cyclic voltammetry (CV) analysis. However, in the Cu electrodeposition system containing PEG of various molecular weights (MWs, PEG200, PEG1500, and PEG3350) and Clโ€“, the predictive performance of concentration was poor when the same electrochemical analysis and model were applied, because of the competition in adsorption between PEGs with a limited number of Clโ€“ in the situation where Clโ€“ acted as an adsorption point for PEG on the electrode surface. In particular, PEG200, due to the small MW, rarely affect Cu electrodeposition, degrading the performance of concentration prediction. In order to control the effect on the adsorption of PEG in CV analysis, the vertex potential of the CV analysis was converted from โ€“0.4 V to โ€“0.2 V (potential with respect to Ag/AgCl reference electrode), and the analytical response of PEG200 was remarkably increased through Iโ€“ pretreatment. The introduction of Iโ€“ made various Cu and I-related electrochemical reaction systems, such as reduction of Cu2+ to Cu+ and oxidation of CuI formed in the process, in addition to copper electrodeposition, and PEG showed different effects by MW on this complex reaction. As a result, by shifting the vertex potential in CV and introducing Iโ€“ as a secondary halide ion, the signal-to-noise ratio of each PEG and Clโ€“ was enhanced and the performance of ANN model for predicting each additive concentration improved.Chapter I. Introduction 1 1.1. Cu electrodeposition 1 1.2. Process variables of Cu electrodeposition 6 1.2.1. Applied potential and current 6 1.2.2. Transport of electroactive/inactive species 8 1.2.3. Additives for Cu electrodeposition 9 1.3. Degradation of Cu electrodeposition process 15 1.3.1. Degradation of accelerator and its effect on Cu electrodeposition 15 1.3.2. Degradation of suppressor and its effect on Cu electrodeposition 17 1.4. Electrochemical monitoring: Cyclic voltammetry stripping 23 1.4.1. Conventional CVS analysis 23 1.4.2. CVS analysis for accelerator 25 1.4.3. CVS analysis for suppressor 26 1.5. Machine learning for chemical system 31 1.5.1. Property of electrochemical analysis 32 1.5.2. Problem of electrochemical analysis and application of machine learning 33 1.5.3. Various machine learning algorithms for electrochemical analysis 35 1.6. Purpose of this study 39 Chapter II. Experimental 42 2.1. Aging experiment and effect of degradation on TSV filling 42 2.2. Electrochemical analysis 45 2.3. CVS analysis 50 2.4. Machine learning 54 Chapter III. Results and Discussion 59 3.1. Effect of the degradation of I and its monitoring 59 3.1.1. The effect of the degradation of I 59 3.1.2. Electrochemical monitoring of I concentration using CVS analysis 61 3.2. Selective determination of EPE concentration irrespective of SPS 75 3.2.1. Effect of SPS on the monitoring of EPE concentration and excluding effect of I for the action of SPS 75 3.2.2. Optimization of the formation of EPE-Cu+-I layer and its application to selective CVS analysis for EPE concentration 77 3.3. Machine learning for monitoring the concentration of PEG with various molecular weight 94 3.3.1. Prediction of concentration in PEG3350/Cl system using various machine learning algorithms 94 3.3.2. Prediction of concentration in PEG3350/Cl system using artificial neural network 96 3.3.3. Accuracy improvement for prediction of concentration in PEG200/PEG1500/PEG3350/Cl system 98 Chapter IV. Conclusion 115 References 119 ๊ตญ๋ฌธ ์ดˆ๋ก 124๋ฐ•
    corecore