23 research outputs found

    Exploring formal models of linguistic data structuring. Enhanced solutions for knowledge management systems based on NLP applications

    Get PDF
    2010 - 2011The principal aim of this research is describing to which extent formal models for linguistic data structuring are crucial in Natural Language Processing (NLP) applications. In this sense, we will pay particular attention to those Knowledge Management Systems (KMS) which are designed for the Internet, and also to the enhanced solutions they may require. In order to appropriately deal with this topics, we will describe how to achieve computational linguistics applications helpful to humans in establishing and maintaining an advantageous relationship with technologies, especially with those technologies which are based on or produce man-machine interactions in natural language. We will explore the positive relationship which may exist between well-structured Linguistic Resources (LR) and KMS, in order to state that if the information architecture of a KMS is based on the formalization of linguistic data, then the system works better and is more consistent. As for the topics we want to deal with, frist of all it is indispensable to state that in order to structure efficient and effective Information Retrieval (IR) tools, understanding and formalizing natural language combinatory mechanisms seems to be the first operation to achieve, also because any piece of information produced by humans on the Internet is necessarily a linguistic act. Therefore, in this research work we will also discuss the NLP structuring of a linguistic formalization Hybrid Model, which we hope will prove to be a useful tool to support, improve and refine KMSs. More specifically, in section 1 we will describe how to structure language resources implementable inside KMSs, to what extent they can improve the performance of these systems and how the problem of linguistic data structuring is dealt with by natural language formalization methods. In section 2 we will proceed with a brief review of computational linguistics, paying particular attention to specific software packages such Intex, Unitex, NooJ, and Cataloga, which are developed according to Lexicon-Grammar (LG) method, a linguistic theory established during the 60’s by Maurice Gross. In section 3 we will describe some specific works useful to monitor the state of the art in Linguistic Data Structuring Models, Enhanced Solutions for KMSs, and NLP Applications for KMSs. In section 4 we will cope with problems related to natural language formalization methods, describing mainly Transformational-Generative Grammar (TGG) and LG, plus other methods based on statistical approaches and ontologies. In section 5 we will propose a Hybrid Model usable in NLP applications in order to create effective enhanced solutions for KMSs. Specific features and elements of our hybrid model will be shown through some results on experimental research work. The case study we will present is a very complex NLP problem yet little explored in recent years, i.e. Multi Word Units (MWUs) treatment. In section 6 we will close our research evaluating its results and presenting possible future work perspectives. [edited by author]X n.s

    Computational approaches to semantic change (Volume 6)

    Get PDF
    Semantic change — how the meanings of words change over time — has preoccupied scholars since well before modern linguistics emerged in the late 19th and early 20th century, ushering in a new methodological turn in the study of language change. Compared to changes in sound and grammar, semantic change is the least understood. Ever since, the study of semantic change has progressed steadily, accumulating a vast store of knowledge for over a century, encompassing many languages and language families. Historical linguists also early on realized the potential of computers as research tools, with papers at the very first international conferences in computational linguistics in the 1960s. Such computational studies still tended to be small-scale, method-oriented, and qualitative. However, recent years have witnessed a sea-change in this regard. Big-data empirical quantitative investigations are now coming to the forefront, enabled by enormous advances in storage capability and processing power. Diachronic corpora have grown beyond imagination, defying exploration by traditional manual qualitative methods, and language technology has become increasingly data-driven and semantics-oriented. These developments present a golden opportunity for the empirical study of semantic change over both long and short time spans

    Formal Linguistic Models and Knowledge Processing. A Structuralist Approach to Rule-Based Ontology Learning and Population

    Get PDF
    2013 - 2014The main aim of this research is to propose a structuralist approach for knowledge processing by means of ontology learning and population, achieved starting from unstructured and structured texts. The method suggested includes distributional semantic approaches and NL formalization theories, in order to develop a framework, which relies upon deep linguistic analysis... [edited by author]XIII n.s

    Open-domain web-based multiple document : question answering for list questions with support for temporal restrictors

    Get PDF
    Tese de doutoramento, Informática (Ciências da Computação), Universidade de Lisboa, Faculdade de Ciências, 2015With the growth of the Internet, more people are searching for information on the Web. The combination of web growth and improvements in Information Technology has reignited the interest in Question Answering (QA) systems. QA is a type of information retrieval combined with natural language processing techniques that aims at finding answers to natural language questions. List questions have been widely studied in the QA field. These are questions that require a list of correct answers, making the task of correctly answering them more complex. In List questions, the answers may lie in the same document or spread over multiple documents. In the latter case, a QA system able to answer List questions has to deal with the fusion of partial answers. The current Question Answering state-of-the-art does not provide yet a good way to tackle this complex problem of collecting the exact answers from multiple documents. Our goal is to provide better QA solutions to users, who desire direct answers, using approaches that deal with the complex problem of extracting answers found spread over several documents. The present dissertation address the problem of answering Open-domain List questions by exploring redundancy and combining it with heuristics to improve QA accuracy. Our approach uses the Web as information source, since it is several orders of magnitude larger than other document collections. Besides handling List questions, we develop an approach with special focus on questions that include temporal information. In this regard, the current work addresses a topic that was lacking specific research. A additional purpose of this dissertation is to report on important results of the research combining Web-based QA, List QA and Temporal QA. Besides the evaluation of our approach itself we compare our system with other QA systems in order to assess its performance relative to the state-of-the-art. Finally, our approaches to answer List questions and List questions with temporal information are implemented into a fully-fledged Open-domain Web-based Question Answering System that provides answers retrieved from multiple documents.Com o crescimento da Internet cada vez mais pessoas buscam informações usando a Web. A combinação do crescimento da Internet com melhoramentos na Tecnologia da Informação traz como consequência o renovado interesse em Sistemas de Respostas a Perguntas (SRP). SRP combina técnicas de recuperação de informação com ferramentas de apoio à linguagem natural com o objetivo de encontrar respostas para perguntas em linguagem natural. Perguntas do tipo lista têm sido largamente estudadas nesta área. Neste tipo de perguntas é esperada uma lista de respostas corretas, o que torna a tarefa de responder a perguntas do tipo lista ainda mais complexa. As respostas para este tipo de pergunta podem ser encontradas num único documento ou espalhados em múltiplos documentos. No último caso, um SRP deve estar preparado para lidar com a fusão de respostas parciais. Os SRP atuais ainda não providenciam uma boa forma de lidar com este complexo problema de coletar respostas de múltiplos documentos. Nosso objetivo é prover melhores soluções para utilizadores que desejam buscar respostas diretas usando abordagens para extrair respostas de múltiplos documentos. Esta dissertação aborda o problema de responder a perguntas de domínio aberto explorando redundância combinada com heurísticas. Nossa abordagem usa a Internet como fonte de informação uma vez que a Web é a maior coleção de documentos da atualidade. Para além de responder a perguntas do tipo lista, nós desenvolvemos uma abordagem para responder a perguntas com restrição temporal. Neste sentido, o presente trabalho aborda este tema onde há pouca investigação específica. Adicionalmente, esta dissertação tem o propósito de informar sobre resultados importantes desta pesquisa que combina várias áreas: SRP com base na Web, SRP especialmente desenvolvidos para responder perguntas do tipo lista e também com restrição temporal. Além da avaliação da nossa própria abordagem, comparamos o nosso sistema com outros SRP, a fim de avaliar o seu desempenho em relação ao estado da arte. Por fim, as nossas abordagens para responder a perguntas do tipo lista e perguntas do tipo lista com informações temporais são implementadas em um Sistema online de Respostas a Perguntas de domínio aberto que funciona diretamente sob a Web e que fornece respostas extraídas de múltiplos documentos.Fundação para a Ciência e a Tecnologia (FCT), SFRH/BD/65647/2009; European Commission, projeto QTLeap (Quality Translation by Deep Language Engineering Approache

    Automatic Population of Structured Reports from Narrative Pathology Reports

    Get PDF
    There are a number of advantages for the use of structured pathology reports: they can ensure the accuracy and completeness of pathology reporting; it is easier for the referring doctors to glean pertinent information from them. The goal of this thesis is to extract pertinent information from free-text pathology reports and automatically populate structured reports for cancer diseases and identify the commonalities and differences in processing principles to obtain maximum accuracy. Three pathology corpora were annotated with entities and relationships between the entities in this study, namely the melanoma corpus, the colorectal cancer corpus and the lymphoma corpus. A supervised machine-learning based-approach, utilising conditional random fields learners, was developed to recognise medical entities from the corpora. By feature engineering, the best feature configurations were attained, which boosted the F-scores significantly from 4.2% to 6.8% on the training sets. Without proper negation and uncertainty detection, the quality of the structured reports will be diminished. The negation and uncertainty detection modules were built to handle this problem. The modules obtained overall F-scores ranging from 76.6% to 91.0% on the test sets. A relation extraction system was presented to extract four relations from the lymphoma corpus. The system achieved very good performance on the training set, with 100% F-score obtained by the rule-based module and 97.2% F-score attained by the support vector machines classifier. Rule-based approaches were used to generate the structured outputs and populate them to predefined templates. The rule-based system attained over 97% F-scores on the training sets. A pipeline system was implemented with an assembly of all the components described above. It achieved promising results in the end-to-end evaluations, with 86.5%, 84.2% and 78.9% F-scores on the melanoma, colorectal cancer and lymphoma test sets respectively
    corecore