1,451 research outputs found

    Visibility Graphs, Dismantlability, and the Cops and Robbers Game

    Get PDF
    We study versions of cop and robber pursuit-evasion games on the visibility graphs of polygons, and inside polygons with straight and curved sides. Each player has full information about the other player's location, players take turns, and the robber is captured when the cop arrives at the same point as the robber. In visibility graphs we show the cop can always win because visibility graphs are dismantlable, which is interesting as one of the few results relating visibility graphs to other known graph classes. We extend this to show that the cop wins games in which players move along straight line segments inside any polygon and, more generally, inside any simply connected planar region with a reasonable boundary. Essentially, our problem is a type of pursuit-evasion using the link metric rather than the Euclidean metric, and our result provides an interesting class of infinite cop-win graphs.Comment: 23 page

    The capture time of grids

    Get PDF
    We consider the game of Cops and Robber played on the Cartesian product of two trees. Assuming the players play perfectly, it is shown that if there are two cops in the game, then the length of the game (known as the 2-capture time of the graph) is equal to half the diameter of the graph. In particular, the 2-capture time of the m x n grid is proved to be floor ((m+n-2)/2).Comment: 7 page

    Subgraphs and Colourability of Locatable Graphs

    Full text link
    We study a game of pursuit and evasion introduced by Seager in 2012, in which a cop searches the robber from outside the graph, using distance queries. A graph on which the cop wins is called locatable. In her original paper, Seager asked whether there exists a characterisation of the graph property of locatable graphs by either forbidden or forbidden induced subgraphs, both of which we answer in the negative. We then proceed to show that such a characterisation does exist for graphs of diameter at most 2, stating it explicitly, and note that this is not true for higher diameter. Exploring a different direction of topic, we also start research in the direction of colourability of locatable graphs, we also show that every locatable graph is 4-colourable, but not necessarily 3-colourable.Comment: 25 page

    Subdivisions in the Robber Locating Game

    Get PDF
    We consider a game in which a cop searches for a moving robber on a graph using distance probes, which is a slight variation on one introduced by Seager. Carragher, Choi, Delcourt, Erickson and West showed that for any n-vertex graph GG there is a winning strategy for the cop on the graph G1/mG^{1/m} obtained by replacing each edge of GG by a path of length mm, if mnm \geqslant n. They conjectured that this bound was best possible for complete graphs, but the present authors showed that in fact the cop wins on K1/mK^{1/m} if and only if mn/2m \geqslant n/2, for all but a few small values of nn. In this paper we extend this result to general graphs by proving that the cop has a winning strategy on G1/mG^{1/m} provided mn/2m \geqslant n/2 for all but a few small values of nn; this bound is best possible. We also consider replacing the edges of GG with paths of varying lengths.Comment: 13 Page
    corecore