2,065 research outputs found

    Coordination of passive systems under quantized measurements

    Get PDF
    In this paper we investigate a passivity approach to collective coordination and synchronization problems in the presence of quantized measurements and show that coordination tasks can be achieved in a practical sense for a large class of passive systems.Comment: 40 pages, 1 figure, submitted to journal, second round of revie

    H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors

    Full text link
    We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the fact that heartbeat intervals can be detected energy-efficiently using inexpensive and power-efficient piezo sensors, which obviates the need to employ complex heartbeat monitors such as Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that piezo sensors can measure heartbeat intervals on many different body locations including chest, wrist, waist, neck and ankle. Unfortunately, we also discover that the heartbeat interval signal captured by piezo vibration sensors has low Signal-to-Noise Ratio (SNR) because they are not designed as precision heartbeat monitors, which becomes the key challenge for H2B. To overcome this problem, we first apply a quantile function-based quantization method to fully extract the useful entropy from the noisy piezo measurements. We then propose a novel Compressive Sensing-based reconciliation method to correct the high bit mismatch rates between the two independently generated keys caused by low SNR. We prototype H2B using off-the-shelf piezo sensors and evaluate its performance on a dataset collected from different body positions of 23 participants. Our results show that H2B has an overwhelming pairing success rate of 95.6%. We also analyze and demonstrate H2B's robustness against three types of attacks. Finally, our power measurements show that H2B is very power-efficient

    On the passivity approach to quantized coordination problems

    Get PDF

    On the passivity approach to quantized coordination problems

    Get PDF
    We investigate a passivity approach to collective coordination problems in the presence of quantized measurements and show that coordination tasks can be achieved in a practical sense for a large class of passive systems. Both static and time-varying graphs are considered. The results are then specialized to some particular coordination problems and compared with existing results.</p

    Energy efficiency of mmWave massive MIMO precoding with low-resolution DACs

    Full text link
    With the congestion of the sub-6 GHz spectrum, the interest in massive multiple-input multiple-output (MIMO) systems operating on millimeter wave spectrum grows. In order to reduce the power consumption of such massive MIMO systems, hybrid analog/digital transceivers and application of low-resolution digital-to-analog/analog-to-digital converters have been recently proposed. In this work, we investigate the energy efficiency of quantized hybrid transmitters equipped with a fully/partially-connected phase-shifting network composed of active/passive phase-shifters and compare it to that of quantized digital precoders. We introduce a quantized single-user MIMO system model based on an additive quantization noise approximation considering realistic power consumption and loss models to evaluate the spectral and energy efficiencies of the transmit precoding methods. Simulation results show that partially-connected hybrid precoders can be more energy-efficient compared to digital precoders, while fully-connected hybrid precoders exhibit poor energy efficiency in general. Also, the topology of phase-shifting components offers an energy-spectral efficiency trade-off: active phase-shifters provide higher data rates, while passive phase-shifters maintain better energy efficiency.Comment: Published in IEEE Journal of Selected Topics in Signal Processin

    Seeing things

    Get PDF
    This paper is concerned with the problem of attaching meaningful symbols to aspects of the visible environment in machine and biological vision. It begins with a review of some of the arguments commonly used to support either the 'symbolic' or the 'behaviourist' approach to vision. Having explored these avenues without arriving at a satisfactory conclusion, we then present a novel argument, which starts from the question : given a functional description of a vision system, when could it be said to support a symbolic interpretation? We argue that to attach symbols to a system, its behaviour must exhibit certain well defined regularities in its response to its visual input and these are best described in terms of invariance and equivariance to transformations which act in the world and induce corresponding changes of the vision system state. This approach is illustrated with a brief exploration of the problem of identifying and acquiring visual representations having these symmetry properties, which also highlights the advantages of using an 'active' model of vision
    • …
    corecore