31,285 research outputs found

    OpenKnowledge at work: exploring centralized and decentralized information gathering in emergency contexts

    Get PDF
    Real-world experience teaches us that to manage emergencies, efficient crisis response coordination is crucial; ICT infrastructures are effective in supporting the people involved in such contexts, by supporting effective ways of interaction. They also should provide innovative means of communication and information management. At present, centralized architectures are mostly used for this purpose; however, alternative infrastructures based on the use of distributed information sources, are currently being explored, studied and analyzed. This paper aims at investigating the capability of a novel approach (developed within the European project OpenKnowledge1) to support centralized as well as decentralized architectures for information gathering. For this purpose we developed an agent-based e-Response simulation environment fully integrated with the OpenKnowledge infrastructure and through which existing emergency plans are modelled and simulated. Preliminary results show the OpenKnowledge capability of supporting the two afore-mentioned architectures and, under ideal assumptions, a comparable performance in both cases

    Incentive-compatible route coordination of crowdsourced resources

    Full text link
    Technical ReportWith the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen-ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1-approximation algorithm to solve the 2 problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    Towards trusted volunteer grid environments

    Full text link
    Intensive experiences show and confirm that grid environments can be considered as the most promising way to solve several kinds of problems relating either to cooperative work especially where involved collaborators are dispersed geographically or to some very greedy applications which require enough power of computing or/and storage. Such environments can be classified into two categories; first, dedicated grids where the federated computers are solely devoted to a specific work through its end. Second, Volunteer grids where federated computers are not completely devoted to a specific work but instead they can be randomly and intermittently used, at the same time, for any other purpose or they can be connected or disconnected at will by their owners without any prior notification. Each category of grids includes surely several advantages and disadvantages; nevertheless, we think that volunteer grids are very promising and more convenient especially to build a general multipurpose distributed scalable environment. Unfortunately, the big challenge of such environments is, however, security and trust. Indeed, owing to the fact that every federated computer in such an environment can randomly be used at the same time by several users or can be disconnected suddenly, several security problems will automatically arise. In this paper, we propose a novel solution based on identity federation, agent technology and the dynamic enforcement of access control policies that lead to the design and implementation of trusted volunteer grid environments.Comment: 9 Pages, IJCNC Journal 201

    Mobile phone and e-government in Turkey: practices and technological choices at the cross-road

    Get PDF
    Enhanced data services through mobile phones are expected to be soon fully transactional and embedded within future mobile consumption practices. While private services will surely continue to take the lead, others such as government and NGOs will become more prominent m-players. It is not yet sure which form of technological standards will take the lead including enhance SMS based operations or Internet based specifically developed mobile phone applications. With the introduction of interactive transactions via mobile phones, currently untapped segment of the populations (without computers) have the potential to be accessed. Our research, as a reflection of the current market situation in an emerging country context, in the case of mobile phones analyzes the current needs or emergence of dependencies regarding the use of m/e-government services from the perspective of municipality officers. We contend that more research is needed to understand current preparatory bottlenecks and front loading activities to be able to encourage future intention to use e-government services through mobile phone technologies. This study highlights and interprets the current emerging practices and praxis for consuming m-government services within government
    corecore