17 research outputs found

    Coordination and navigation of heterogeneous MAV-UGV formations localized by a 'hawk-eye'-like approach under a model predictive control scheme

    Get PDF
    n approach for coordination and control of 3D heterogeneous formations of unmanned aerial and ground vehicles under hawk-eye-like relative localization is presented in this paper. The core of the method lies in the use of visual top-view feedback from flying robots for the stabilization of the entire group in a leader–follower formation. We formulate a novel model predictive control-based methodology for guiding the formation. The method is employed to solve the trajectory planning and control of a virtual leader into a desired target region. In addition, the method is used for keeping the following vehicles in the desired shape of the group. The approach is designed to ensure direct visibility between aerial and ground vehicles, which is crucial for the formation stabilization using the hawk-eye-like approach. The presented system is verified in numerous experiments inspired by search-and-rescue applications, where the formation acts as a searching phalanx. In addition, stability and convergence analyses are provided to explicitly determine the limitations of the method in real-world applications

    WhyCon: an efficient, marker-based localization system

    Get PDF
    We present an open-source marker-based localization system intended as a low-cost easy-to-deploy solution for aerial and swarm robotics. The main advantage of the presented method is its high computational efficiency, which allows its deployment on small robots with limited computational resources. Even on low-end computers, the core component of the system can detect and estimate 3D positions of hundreds of black and white markers at the maximum frame-rate of standard cameras. The method is robust to changing lighting conditions and achieves accuracy in the order of millimeters to centimeters. Due to its reliability, simplicity of use and availability as an open-source ROS module (http://purl.org/robotics/whycon), the system is now used in a number of aerial robotics projects where fast and precise relative localization is required

    Emergent behaviors in the Internet of things: The ultimate ultra-large-scale system

    Get PDF
    To reach its potential, the Internet of Things (IoT) must break down the silos that limit applications' interoperability and hinder their manageability. Doing so leads to the building of ultra-large-scale systems (ULSS) in several areas, including autonomous vehicles, smart cities, and smart grids. The scope of ULSS is both large and complex. Thus, the authors propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly programming all possible decisions in the vast space of ULSS scenarios, HEB relies on the emergent behaviors induced by local rules at each level of the hierarchy. The authors discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. They also illustrate the HEB concepts in reference to autonomous vehicles. This use case paves the way to the discussion of new lines of research.Damian Roca work was supported by a Doctoral Scholarship provided by Fundación La Caixa. This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493) and by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P).Peer ReviewedPostprint (author's final draft

    Advances in the Hierarchical Emergent Behaviors (HEB) approach to autonomous vehicles

    Get PDF
    Widespread deployment of autonomous vehicles (AVs) presents formidable challenges in terms on handling scalability and complexity, particularly regarding vehicular reaction in the face of unforeseen corner cases. Hierarchical Emergent Behaviors (HEB) is a scalable architecture based on the concepts of emergent behaviors and hierarchical decomposition. It relies on a few simple but powerful rules to govern local vehicular interactions. Rather than requiring prescriptive programming of every possible scenario, HEB’s approach relies on global behaviors induced by the application of these local, well-understood rules. Our first two papers on HEB focused on a primal set of rules applied at the first hierarchical level. On the path to systematize a solid design methodology, this paper proposes additional rules for the second level, studies through simulations the resultant richer set of emergent behaviors, and discusses the communica-tion mechanisms between the different levels.Peer ReviewedPostprint (author's final draft

    Localization of Unmanned Aerial Vehicles Using an Optical Flow in Camera Images

    Get PDF
    Existuje mnoho technik navigace bezpilotních letadel v prostředích bez dostupnosti GPS. Kalkulace optického toku na palubě pomocí jedné kamery poskytuje uživateli rychle nasaditelné a spolehlivé řešení. Cílem této práce bylo vytvořit náhradu pro populární senzor PX4FLOW Smart Camera, který je zatížen mnoha nevýhodami, a integrovat vzniklé řešení na UAV platformu. Použili jsme fázovou korelaci pro odhad optického toku, pro následné zpracování byla použita metoda inspirována algoritmem RANSAC. Řešení bylo otestováno na datech z reálného světa a porovnáno se senzorem PX4FLOW. Byli jsme schopni poskytnout výrazně větší přesnost a spolehlivost měření horizontální rychlosti v rámci našich testů. Dále byla také vytvořena a otestována metoda pro určení vertikální rychlosti a rychlosti rotace, která používá odhadnutý optický tok z více částí obrazu. Testy na datech z reálného světa ukázaly, že přesnost měření rotace je dostatečná pro praktické použití. To umožňuje, aby metoda byla nasazena i v prostředí, kde není možné používat kompas např. v železobetonových budovách.Navigation of Unmanned Aerial Vehicles in GPS-denied environments can be done with multiple techniques. On-board optical flow calculation using single camera gives the user fast-deployable and reliable solution. The goal of this work was to create a replacement for popular PX4FLOW Smart Camera, which is burdened by many drawbacks, and to integrate the solution onto a UAV platform. We used Phase correlation for optical flow estimation and a RANSAC-inspired post-processing method. The solution was tested on real-world datasets and compared with PX4FLOW sensor. We were able to provide significantly higher accuracy and reliability of horizontal speed measurement in our tests. Moreover, a method for yaw rate and vertical velocity measurement using optical flow in different parts of the image was designed and tested. Tests on real-world datasets showed that the accuracy of the yaw rate estimation method was good enough for practical applications. This makes the method open for usage in magnetometer-denied environments such as reinforced concrete buildings

    Path Planning for incline terrain using Embodied Artificial Intelligence

    Get PDF
    Η Ενσώματη Τεχνητή Νοημοσύνη στοχεύει στο να καλύψει την ανάγκη για την αναπαράσταση ενός προβλήματος αναζήτησης, καθώς και την αναπαράσταση του τι συνιστά “καλή” λύση για το πρόβλημα αυτό σε μια έξυπνη μηχανή. Στην περίπτωση της παρούσας πτυχιακής, αυτή η έξυπνη μηχανή είναι ένα ρομπότ. Συνδυάζοντας την Τεχνητή Νοημοσύνη και την Ρομποτική μπορούμε να ορίσουμε πειράματα των οποίων ο χώρος αναζήτησης είναι ο φυσικός κόσμος και τα αποτελέσματα κάθε πράξης συνιστούν την αξιολόγηση της κάθε λύσης. Στο πλαίσιο της πτυχιακής μου είχα την ευκαιρία να πειραματιστώ με την ανάπτυξη αλγορίθμων Τεχνητής Νοημοσύνης οι οποίοι καθοδηγούν ένα μη επανδρωμένο όχημα εδάφους στην ανακάλυψη μιας λύσης ενός δύσκολου προβλήματος πλοήγησης σε εξωτερικό χώρο, όπως η διάσχιση ενός εδάφους με απότομη κλίση. Επιχείρησα να αντιμετωπίσω το πρόβλημα αυτό με τρεις διαφορετικές προσεγγίσεις, μία με αλγόριθμο Hill Climbing, μία με N-best αναζήτηση και μία με Εξελικτικό Αλγόριθμο, καθεμία με τα δικά της προτερήματα και τις δικές της αδυναμίες. Τελικά, δημιούργησα και αξιολόγησα επίδειξεις, τόσο σε προσομοιωμένα σενάρια όσο και σε ένα σενάριο στον πραγματικό κόσμο. Τα αποτελέσματα αυτών των επιδείξεων δείχνουν μία σαφή πρόοδο στην προσέγγιση του προαναφερθέντος προβλήματος από μία ρομποτική πλαρφόρμα.Embodied Artificial Intelligence aims to cover the need of a search problem’s representation, as well as the representation of what constitutes a “good” solution to this problem in a smart machine. In this thesis’ case, this smart machine is a robot. When we combine Artificial Intelligence and Robotics we can define experiments where the search space is the physical world and the results of each action constitute each solution’s evaluation. In my thesis’ context, I had the opportunity to experiment with the development of artificial intelligence algorithms that guide an unmanned ground vehicle to discover the solution of a tough outdoor navigation problem, like traversing a terrain region of steep incline. I attempted to face the problem with three different approaches. A Hill Climbing algorithm approach, a N-best search approach and an Evolutionary Algorithm approach, each one with its own strengths and weaknesses. In the end, I created and I evaluated demonstrations, both in simulated scenarios and in a real world scenario. The results of these demonstrations show a clear progress in the approach of the aforementioned problem, by the robotic platform

    Safe Autonomous Aerial Surveys of Historical Building Interiors

    Get PDF
    Cílem této práce je vývoj systému pro bezpečný autonomní průzkum interiérů historických budov za pomocí vícerotorových autonomních bezpilotních helikoptér. Navržené řešení zahrnuje metodu pro sledování požadované trajektorie založené na přístupu lídr-následovník a prediktivním řízení, detekci potenciálních chyb a systému pro řízení mise, který zprostředkovává spolupráci mezi jednotlivými členy formace a korektní reakci na nastalé chyby jednotlivých podsystémů. Návrh celého systému je ovlivněn jeho plánovaným nasazením v rámci skenování interiérů historických budov. Funkčnost navrženého systému je nejprve otestována v rámci početných simulací a následně během experimentu s reálnými bezpilotními helikoptérami.This thesis is aimed at development of the system for safe autonomous survey of historical building interiors by the cooperative formation of multi-rotor unmanned aerial vehicles (UAVs). The proposed solution involves the method for safe trajectory tracking based on the leader-follower scheme and model predictive control, detection of potential faults and failures, and the mission controller which ensures the control of cooperation of particular UAVs and proper reaction on occurrence of faults and failures. The proposition of the whole system is influenced by the aim at its deployment in real world scenarios motivated by the documentation of historical monuments. The developed system is firstly evaluated in simulations. After that, it is tested in a real world scenario with the real UAVs

    Coverage Path Planning for a Moving Vehicle

    Get PDF
    A simple coverage plan called a Conformal Lawn Mower plan is demonstrated. This plan enables a UAV to fully cover the route ahead of a moving ground vehicle. The plan requires only limited knowledge of the ground vehicle's future path. For a class of curvature-constrained ground vehicle paths, the proposed plan requires a UAV velocity that is no more than twice the velocity required to cover the optimal plan. Necessary and sufficient UAV velocities, relative to the ground vehicle velocity, required to successfully cover any path in the curvature restricted set are established. In simulation, the proposed plan is validated, showing that the required velocity to provide coverage is strongly related to the curvature of the ground vehicle's path. The results also illustrate the relationship between mapping requirements and the relative velocities of the UAV and ground vehicle. Next, I investigate the challenges involved in providing timely mapping information to a moving ground vehicle where the path of that vehicle is not known in advance. I establish necessary and sufficient UAV velocities, relative to the ground vehicle velocity, required to successfully cover any path the ground vehicle may follow. Finally, I consider a reduced problem for sensor coverage ahead of a moving ground vehicle. Given the ground vehicle route, the UAV planner calculates the regions that must be covered and the time by which each must be covered. The UAV planning problem takes the form of an Orienteering Problem with Time Windows (OPTW). The problem is cast the problem as a Mixed Integer Linear Program (MILP) to find a UAV path that maximizes the area covered within the time constraints dictated by the moving ground vehicle. To improve scalability of the proposed solution, I prove that the optimization can be partitioned into a set of smaller problems, each of which may be solved independently without loss of overall solution optimality. This divide and conquer strategy allows faster solution times, and also provides higher-quality solutions when given a fixed time budget for solving the MILP. We also demonstrate a method of limited loss partitioning, which can perform a trade-off between improved solution time and a bounded objective loss
    corecore