133 research outputs found

    Dexterous Manipulation Graphs

    Full text link
    We propose the Dexterous Manipulation Graph as a tool to address in-hand manipulation and reposition an object inside a robot's end-effector. This graph is used to plan a sequence of manipulation primitives so to bring the object to the desired end pose. This sequence of primitives is translated into motions of the robot to move the object held by the end-effector. We use a dual arm robot with parallel grippers to test our method on a real system and show successful planning and execution of in-hand manipulation

    Control of Rolling Contacts in Multi-Arm Manipulation

    Get PDF
    When multiple arms are used to manipulate a large object, it is beneficial and sometimes necessary to maintain and control contacts between the object and the effector (the contacting surface of an arm) through force closure. Rolling and/or sliding can occur at these contacts, and the system is characterized by holonomic as well as nonholonomic (including unilateral) constraints. In this paper, the control of planar rolling contacts is investigated. Multi-arm manipulation systems are typically redundant. In our approach, a minimal set of inputs is employed to control the trajectory of the system while the surplus inputs control the contact condition. The trajectory includes the gross motion of the object as well as the rolling motion at the contacts. A nonlinear feedback scheme for simultaneous control of motion as well as contact conditions is presented. A new algorithm which adapts a two-effector grasp with rolling contacts to external loads and the trajectory is developed. Simulations and experimental results are used to illustrate the salient features in control and planning

    Multi-Arm Manipulation of Large Objects With Rolling Contacts

    Get PDF
    The problem of manipulating objects which are relatively larger than the size of the manipulators is investigated. Large objects without special features such as handles can not be grasped easily by the conventional end effectors such as parallel-jaw grippers or multi-fingered hands. This work focuses on the manipulation of large objects in the plane and analyzes the contact interactions. The flat surface effectors of planar three link manipulators interact with the object. The dynamics of the object and the manipulators are included in the equations of motion that govern the planar manipulation system. The contacts between the link surface and the object can be characterized by rolling, sliding, and separation. This study focuses on rolling which is explicitly included in the dynamic model of the system. Contact separation is avoided by enforcing the unilateral constraint that each manipulator must push at the contact point. Sliding is avoided by constraining the applied force to fall within the contact friction cone. The dynamic coordination between multiple manipulators is achieved by simultaneously regulating the motion of the object and the critical contact force. Control algorithms are developed that employ nonlinear feedback to linearize and decouple the system. A motion and force planner is developed which incorporates the unilateral constraints into the system. The motion planner also specifies the rolling motion for each contact. Rolling enables the system to avoid slipping by repositioning the contact points such that forces are applied along the surface normals. The calculations of the rolling motion planner are based on the dynamics of the object, the measured external disturbance forces, and desired critical contact force. Extensions of the analysis are investigated by relaxing certain key assumptions. Results from simulation and experimentation are presented to verify the efficacy of the theory and to provide insight into the issues of practical implementation

    Hybrid motion planning approach for robot dexterous hands

    Get PDF
    This paper presents a manipulation planning approach for robot hands that enables the generation of finger trajectories. The planner is based on a hybrid approach that combines discrete-continuous kinematics using a fully discrete transition system. One of the main contributions of this work consists in the representation of the universe of different submodel combinations, as states in a discrete transition system. The manipulated object geometry is taken into account and the system composed by the object and the hand is modeled as a set of closed kinematical chains. The methodology enables the synthesis of complex manipulation trajectories, when one or more fingers change the contact condition with the object. Contact condition changes include rolling contact, sliding contact, contact loss and contact establishment. Tests were carried out employing a three finger manipulation task in computer simulations and with an experimental setup

    Modelling and Interactional Control of a Multi-fingered Robotic Hand for Grasping and Manipulation.

    Get PDF
    PhDIn this thesis, the synthesis of a grasping and manipulation controller of the Barrett hand, which is an archetypal example of a multi-fingered robotic hand, is investigated in some detail. This synthesis involves not only the dynamic modelling of the robotic hand but also the control of the joint and workspace dynamics as well as the interaction of the hand with object it is grasping and the environment it is operating in. Grasping and manipulation of an object by a robotic hand is always challenging due to the uncertainties, associated with non-linearities of the robot dynamics, unknown location and stiffness parameters of the objects which are not structured in any sense and unknown contact mechanics during the interaction of the hand’s fingers and the object. To address these challenges, the fundamental task is to establish the mathematical model of the robot hand, model the body dynamics of the object and establish the contact mechanics between the hand and the object. A Lagrangian based mathematical model of the Barrett hand is developed for controller implementation. A physical SimMechanics based model of the Barrett hand is also developed in MATLAB/Simulink environment. A computed torque controller and an adaptive sliding model controller are designed for the hand and their performance is assessed both in the joint space and in the workspace. Stability analysis of the controllers are carried out before developing the control laws. The higher order sliding model controllers are developed for the position control assuming that the uncertainties are in place. Also, this controllers enhance the performance by reducing chattering of the control torques applied to the robot hand. A contact model is developed for the Barrett hand as its fingers grasp the object in the operating environment. The contact forces during the simulation of the interaction of the fingers with the object were monitored, for objects with different stiffness values. Position and force based impedance controllers are developed to optimise the contact force. To deal with the unknown stiffness of the environment, adaptation is implemented by identifying the impedance. An evolutionary algorithm is also used to estimate the desired impedance parameters of the dynamics of the coupled robot and compliant object. A Newton-Euler based model is developed for the rigid object body. A grasp map and a hand Jacobian are defined for the Barrett hand grasping an object. A fixed contact model with friction is considered for the grasping and the manipulation control. The compliant dynamics of Barrett hand and object is developed and the control problem is defined in terms of the contact force. An adaptive control framework is developed and implemented for different grasps and manipulation trajectories of the Barrett hand. The adaptive controller is developed in two stages: first, the unknown robot and object dynamics are estimated and second, the contact force is computed from the estimated dynamics. The stability of the controllers is ensured by applying Lyapunov’s direct method

    Nonprehensile Manipulation of Deformable Objects: Achievements and Perspectives from the RoDyMan Project

    Get PDF
    The goal of this work is to disseminate the results achieved so far within the RODYMAN project related to planning and control strategies for robotic nonprehensile manipulation. The project aims at advancing the state of the art of nonprehensile dynamic manipulation of rigid and deformable objects to future enhance the possibility of employing robots in anthropic environments. The final demonstrator of the RODYMAN project will be an autonomous pizza maker. This article is a milestone to highlight the lessons learned so far and pave the way towards future research directions and critical discussions

    The GR2 gripper: an underactuated hand for open-loop in-hand planar manipulation

    Get PDF
    Performing dexterous manipulation of unknown objects with robot grippers without using high-fidelity contact sensors, active/sliding surfaces, or a priori workspace exploration is still an open problem in robot manipulation and a necessity for many robotics applications. In this paper, we present a two-fingered gripper topology that enables an enhanced predefined in-hand manipulation primitive controlled without knowing the size, shape, or other particularities of the grasped object. The in-hand manipulation behavior, namely, the planar manipulation of the grasped body, is predefined thanks to a simple hybrid low-level control scheme and has an increased range of motion due to the introduction of an elastic pivot joint between the two fingers. Experimental results with a prototype clearly show the advantages and benefits of the proposed concept. Given the generality of the topology and in-hand manipulation principle, researchers and designers working on multiple areas of robotics can benefit from the findings
    • …
    corecore