17,578 research outputs found

    Empirical and Strong Coordination via Soft Covering with Polar Codes

    Full text link
    We design polar codes for empirical coordination and strong coordination in two-node networks. Our constructions hinge on the fact that polar codes enable explicit low-complexity schemes for soft covering. We leverage this property to propose explicit and low-complexity coding schemes that achieve the capacity regions of both empirical coordination and strong coordination for sequences of actions taking value in an alphabet of prime cardinality. Our results improve previously known polar coding schemes, which (i) were restricted to uniform distributions and to actions obtained via binary symmetric channels for strong coordination, (ii) required a non-negligible amount of common randomness for empirical coordination, and (iii) assumed that the simulation of discrete memoryless channels could be perfectly implemented. As a by-product of our results, we obtain a polar coding scheme that achieves channel resolvability for an arbitrary discrete memoryless channel whose input alphabet has prime cardinality.Comment: 14 pages, two-column, 5 figures, accepted to IEEE Transactions on Information Theor

    Secure Cascade Channel Synthesis

    Full text link
    We consider the problem of generating correlated random variables in a distributed fashion, where communication is constrained to a cascade network. The first node in the cascade observes an i.i.d. sequence XnX^n locally before initiating communication along the cascade. All nodes share bits of common randomness that are independent of XnX^n. We consider secure synthesis - random variables produced by the system appear to be appropriately correlated and i.i.d. even to an eavesdropper who is cognizant of the communication transmissions. We characterize the optimal tradeoff between the amount of common randomness used and the required rates of communication. We find that not only does common randomness help, its usage exceeds the communication rate requirements. The most efficient scheme is based on a superposition codebook, with the first node selecting messages for all downstream nodes. We also provide a fleeting view of related problems, demonstrating how the optimal rate region may shrink or expand.Comment: Submitted to IEEE Transactions on Information Theor

    Strong Coordination over Noisy Channels: Is Separation Sufficient?

    Full text link
    We study the problem of strong coordination of actions of two agents XX and YY that communicate over a noisy communication channel such that the actions follow a given joint probability distribution. We propose two novel schemes for this noisy strong coordination problem, and derive inner bounds for the underlying strong coordination capacity region. The first scheme is a joint coordination-channel coding scheme that utilizes the randomness provided by the communication channel to reduce the local randomness required in generating the action sequence at agent YY. The second scheme exploits separate coordination and channel coding where local randomness is extracted from the channel after decoding. Finally, we present an example in which the joint scheme is able to outperform the separate scheme in terms of coordination rate.Comment: 9 pages, 4 figures. An extended version of a paper accepted for the IEEE International Symposium on Information Theory (ISIT), 201
    corecore