49,758 research outputs found

    A transition system semantics for the control-driven coordination language Manifold

    Get PDF
    AbstractCoordination languages are a new class of parallel programming languages which manage the interactions among concurrent programs. Basically, coordination is achieved either by manipulating data values shared among all active processes or by dynamically evolving the interconnections among the processes as a consequence of observations of their state changes. The latter, also called control-driven coordination, is supported by MANIFOLD. We present the formal semantics of a kernel of MANIFOLD, based on a two-level transition system model: the first level is used to specify the ideal behavior of each single component in a MANIFOLD system, whereas the second level captures their interactions. Although we apply our two-level model in this paper to define the semantics of a control-oriented coordination language, this approach is useful for the formal studies of other coordination models and languages as well

    Characterizing traits of coordination

    Full text link
    How can one recognize coordination languages and technologies? As this report shows, the common approach that contrasts coordination with computation is intellectually unsound: depending on the selected understanding of the word "computation", it either captures too many or too few programming languages. Instead, we argue for objective criteria that can be used to evaluate how well programming technologies offer coordination services. Of the various criteria commonly used in this community, we are able to isolate three that are strongly characterizing: black-box componentization, which we had identified previously, but also interface extensibility and customizability of run-time optimization goals. These criteria are well matched by Intel's Concurrent Collections and AstraKahn, and also by OpenCL, POSIX and VMWare ESX.Comment: 11 pages, 3 table

    Coordination using a Single-Writer Multiple-Reader Concurrent Logic Language

    Get PDF
    The principle behind concurrent logic programming is a set of processes which co-operate in monotonically constraining a global set of variables to particular values. Each process will have access to only some of the variables, and a process may bind a variable to a tuple containing further variables which may be bound later by other processes. This is a suitable model for a coordination language. In this paper we describe a type system which ensures the co-operation principle is never breached, and which makes clear through syntax the pattern of data flow in a concurrent logic program. This overcomes problems previously associated with the practical use of concurrent logic languages

    Holographic and 3D teleconferencing and visualization: implications for terabit networked applications

    Get PDF
    Abstract not available

    A Case Study in Coordination Programming: Performance Evaluation of S-Net vs Intel's Concurrent Collections

    Get PDF
    We present a programming methodology and runtime performance case study comparing the declarative data flow coordination language S-Net with Intel's Concurrent Collections (CnC). As a coordination language S-Net achieves a near-complete separation of concerns between sequential software components implemented in a separate algorithmic language and their parallel orchestration in an asynchronous data flow streaming network. We investigate the merits of S-Net and CnC with the help of a relevant and non-trivial linear algebra problem: tiled Cholesky decomposition. We describe two alternative S-Net implementations of tiled Cholesky factorization and compare them with two CnC implementations, one with explicit performance tuning and one without, that have previously been used to illustrate Intel CnC. Our experiments on a 48-core machine demonstrate that S-Net manages to outperform CnC on this problem.Comment: 9 pages, 8 figures, 1 table, accepted for PLC 2014 worksho

    S-Net for multi-memory multicores

    Get PDF
    Copyright ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming: http://doi.acm.org/10.1145/1708046.1708054S-Net is a declarative coordination language and component technology aimed at modern multi-core/many-core architectures and systems-on-chip. It builds on the concept of stream processing to structure dynamically evolving networks of communicating asynchronous components. Components themselves are implemented using a conventional language suitable for the application domain. This two-level software architecture maintains a familiar sequential development environment for large parts of an application and offers a high-level declarative approach to component coordination. In this paper we present a conservative language extension for the placement of components and component networks in a multi-memory environment, i.e. architectures that associate individual compute cores or groups thereof with private memories. We describe a novel distributed runtime system layer that complements our existing multithreaded runtime system for shared memory multicores. Particular emphasis is put on efficient management of data communication. Last not least, we present preliminary experimental data
    corecore