97 research outputs found

    Vision based leader-follower formation control for mobile robots

    Get PDF
    Creating systems with multiple autonomous vehicles places severe demands on the design of control schemes. Robot formation control plays a vital role in coordinating robots. As the number of members in a system rise, the complexity of each member increases. There is a proportional increase in the quantity and complexity of onboard sensing, control and computation. This thesis investigates the control of a group of mobile robots consisting of a leader and several followers to maintain a desired geometric formation --Abstract, page iii

    Muscleless Motor synergies and actions without movements : From Motor neuroscience to cognitive robotics

    Get PDF
    Emerging trends in neurosciences are providing converging evidence that cortical networks in predominantly motor areas are activated in several contexts related to ‘action’ that do not cause any overt movement. Indeed for any complex body, human or embodied robot inhabiting unstructured environments, the dual processes of shaping motor output during action execution and providing the self with information related to feasibility, consequence and understanding of potential actions (of oneself/others) must seamlessly alternate during goal-oriented behaviors, social interactions. While prominent approaches like Optimal Control, Active Inference converge on the role of forward models, they diverge on the underlying computational basis. In this context, revisiting older ideas from motor control like the Equilibrium Point Hypothesis and synergy formation, this article offers an alternative perspective emphasizing the functional role of a ‘plastic, configurable’ internal representation of the body (body-schema) as a critical link enabling the seamless continuum between motor control and imagery. With the central proposition that both “real and imagined” actions are consequences of an internal simulation process achieved though passive goal-oriented animation of the body schema, the computational/neural basis of muscleless motor synergies (and ensuing simulated actions without movements) is explored. The rationale behind this perspective is articulated in the context of several interdisciplinary studies in motor neurosciences (for example, intracranial depth recordings from the parietal cortex, FMRI studies highlighting a shared cortical basis for action ‘execution, imagination and understanding’), animal cognition (in particular, tool-use and neuro-rehabilitation experiments, revealing how coordinated tools are incorporated as an extension to the body schema) and pertinent challenges towards building cognitive robots that can seamlessly “act, interact, anticipate and understand” in unstructured natural living spaces

    Graphical modelling of modular machines

    Get PDF
    This research is aimed at advancing machine design through specifying and implementing (in "proof of concept" form) a set of tools which graphically model modular machines. The tools allow mechanical building elements (or machine modules) to be selected and configured together in a highly flexible manner so that operation of the chosen configuration can be simulated and performance properties evaluated. Implementation of the tools has involved an extension in capability of a proprietary robot simulation system. This research has resulted in a general approach to graphically modelling manufacturing machines built from modular elements. A focus of study has been on a decomposition of machine functionality leading to the establishment of a library of modular machine primitives. This provides a useful source of commonly required machine building elements for use by machine designers. Study has also focussed on the generation of machine configuration tools which facilitate the construction of a simulation model and ultimately the physical machine itself. Simulation aspects of machine control are also considered which depict methods of manipulating a machine model in the simulation phase. In addition methods of achieving machine programming have been considered which specify the machine and its operational tasks. Means of adopting common information data structures are also considered which can facilitate interfacing with other systems, including the physical machine system constructed as an issue of the simulation phase. Each of these study areas is addressed in its own context, but collectively they provide a means of creating a complete modular machine design environment which can provide significant assistance to machine designers. Part of the methodology employed in the study is based on the use of the discrete event simulation technique. To easily and effectively describe a modular machine and its activity in a simulation model, a hierarchical ring and tree data structure has been designed and implemented. The modularity and reconfigurability are accommodated by the data structure, and homogeneous transformations are adopted to determine the spatial location and orientation of each of the machine elements. A three-level machine task programming approach is used to describe the machine's activities. A common data format method is used to interface the machine design environment with the physical machine and other building blocks of manufacturing systems (such as CAD systems) where systems integration approaches can lead to enhanced product realisation. The study concludes that a modular machine design environment can be created by employing the graphical simulation approach together with a set of comprehensive configuration. tools. A generic framework has been derived which outlines the way in which machine design environments can be constructed and suggestions are made as to how the proof of concept design environment implemented in this study can be advanced

    Implementation of a Variable Duty Factor Controller on a Six-Legged Axi-Symmetric Walking Robot

    Get PDF
    Hexplorer is a six-legged walking robot developed at the University of Waterloo. The robot is controlled by a network of seven digital signal processors, six of which control three motors each, for a total of 18 motors. Brand new custom electronics were designed to house the digital signal processors and associated circuitry. A variable duty factor wave gait, developed by Yoneda et al. was simulated and implemented on the robot. Simulation required an in-depth kinematic analysis that was complicated by the mechanical design of parallel mechanism comprising the legs. These complications were handled in both simulation and implementation. However, due to mechanical issues Hexplorer walked for only one or two steps at a time

    Passive Motion Paradigm: An Alternative to Optimal Control

    Get PDF
    In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures

    An Asynchronous Simulation Framework for Multi-User Interactive Collaboration: Application to Robot-Assisted Surgery

    Get PDF
    The field of surgery is continually evolving as there is always room for improvement in the post-operative health of the patient as well as the comfort of the Operating Room (OR) team. While the success of surgery is contingent upon the skills of the surgeon and the OR team, the use of specialized robots has shown to improve surgery-related outcomes in some cases. These outcomes are currently measured using a wide variety of metrics that include patient pain and recovery, surgeon’s comfort, duration of the operation and the cost of the procedure. There is a need for additional research to better understand the optimal criteria for benchmarking surgical performance. Presently, surgeons are trained to perform robot-assisted surgeries using interactive simulators. However, in the absence of well-defined performance standards, these simulators focus primarily on the simulation of the operative scene and not the complexities associated with multiple inputs to a real-world surgical procedure. Because interactive simulators are typically designed for specific robots that perform a small number of tasks controlled by a single user, they are inflexible in terms of their portability to different robots and the inclusion of multiple operators (e.g., nurses, medical assistants). Additionally, while most simulators provide high-quality visuals, simplification techniques are often employed to avoid stability issues for physics computation, contact dynamics and multi-manual interaction. This study addresses the limitations of existing simulators by outlining various specifications required to develop techniques that mimic real-world interactions and collaboration. Moreover, this study focuses on the inclusion of distributed control, shared task allocation and assistive feedback -- through machine learning, secondary and tertiary operators -- alongside the primary human operator

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Kinematics, motion analysis and path planning for four kinds of wheeled mobile robots

    Get PDF
    corecore