1,214 research outputs found

    Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance

    Full text link
    Full Duplex or Simultaneous transmission and reception (STR) in the same frequency at the same time can potentially double the physical layer capacity. However, high power transmit signal will appear at receive chain as echoes with powers much higher than the desired received signal. Therefore, in order to achieve the potential gain, it is imperative to cancel these echoes. As these high power echoes can saturate low noise amplifier (LNA) and also digital domain echo cancellation requires unrealistically high resolution analog-to-digital converter (ADC), the echoes should be cancelled or suppressed sufficiently before LNA. In this paper we present a closed-loop echo cancellation technique which can be implemented purely in analogue domain. The advantages of our method are multiple-fold: it is robust to phase noise, does not require additional set of antennas, can be applied to wideband signals and the performance is irrelevant to radio frequency (RF) impairments in transmit chain. Next, we study a few protocols for STR systems in carrier sense multiple access (CSMA) network and investigate MAC level throughput with realistic assumptions in both single cell and multiple cells. We show that STR can reduce hidden node problem in CSMA network and produce gains of up to 279% in maximum throughput in such networks. Finally, we investigate the application of STR in cellular systems and study two new unique interferences introduced to the system due to STR, namely BS-BS interference and UE-UE interference. We show that these two new interferences will hugely degrade system performance if not treated appropriately. We propose novel methods to reduce both interferences and investigate the performances in system level.Comment: 20 pages. This manuscript will appear in the IEEE Transactions on Wireless Communication

    Exploiting programmable architectures for WiFi/ZigBee inter-technology cooperation

    Get PDF
    The increasing complexity of wireless standards has shown that protocols cannot be designed once for all possible deployments, especially when unpredictable and mutating interference situations are present due to the coexistence of heterogeneous technologies. As such, flexibility and (re)programmability of wireless devices is crucial in the emerging scenarios of technology proliferation and unpredictable interference conditions. In this paper, we focus on the possibility to improve coexistence performance of WiFi and ZigBee networks by exploiting novel programmable architectures of wireless devices able to support run-time modifications of medium access operations. Differently from software-defined radio (SDR) platforms, in which every function is programmed from scratch, our programmable architectures are based on a clear decoupling between elementary commands (hard-coded into the devices) and programmable protocol logic (injected into the devices) according to which the commands execution is scheduled. Our contribution is two-fold: first, we designed and implemented a cross-technology time division multiple access (TDMA) scheme devised to provide a global synchronization signal and allocate alternating channel intervals to WiFi and ZigBee programmable nodes; second, we used the OMF control framework to define an interference detection and adaptation strategy that in principle could work in independent and autonomous networks. Experimental results prove the benefits of the envisioned solution

    Turbo Packet Combining for Broadband Space-Time BICM Hybrid-ARQ Systems with Co-Channel Interference

    Full text link
    In this paper, efficient turbo packet combining for single carrier (SC) broadband multiple-input--multiple-output (MIMO) hybrid--automatic repeat request (ARQ) transmission with unknown co-channel interference (CCI) is studied. We propose a new frequency domain soft minimum mean square error (MMSE)-based signal level combining technique where received signals and channel frequency responses (CFR)s corresponding to all retransmissions are used to decode the data packet. We provide a recursive implementation algorithm for the introduced scheme, and show that both its computational complexity and memory requirements are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. Furthermore, we analyze the asymptotic performance, and show that under a sum-rank condition on the CCI MIMO ARQ channel, the proposed packet combining scheme is not interference-limited. Simulation results are provided to demonstrate the gains offered by the proposed technique.Comment: 12 pages, 7 figures, and 2 table

    Advanced PHY/MAC Design for Infrastructure-less Wireless Networks

    Get PDF
    Wireless networks play a key role in providing information exchange among distributed mobile devices. Nowadays, Infrastructure-Less Wireless Networks (ILWNs), which include ad hoc and sensor networks, are gaining increasing popularity as they do not need a fixed infrastructure. Simultaneously, multiple research initiatives have led to different findings at the physical (PHY) layer of the wireless communication systems, which can effectively be adopted in ILWNs. However, the distributed nature of ILWNs demand for different network control policies that should have into account the most recent findings to increase the network performance. This thesis investigates the adoption of Multi-Packet Reception (MPR) techniques at the PHY layer of distributed wireless networks, which is itself a challenging task due to the lack of a central coordinator and the spatial distribution of the nodes. The work starts with the derivation of an MPR system performance model that allows to determine optimal points of operation for different radio conditions. The model developed and validated in this thesis is then used to study the performance of ILWNs in high density of transmitters and when the spectrum can be sensed a priori (i.e. before each transmission). Based on the theoretical analysis developed in the thesis, we show that depending on the propagation conditions the spectrum sensing can reduce the network throughput to a level where its use should be avoided. At the final stage, we propose a crosslayered architecture that improves the capacity of an ILWN. Different Medium Access Control (MAC) schemes for ILWNs adopting MPR communications are proposed and their performance is theoretically characterized. We propose a cross-layer optimization methodology that considers the features of the MPR communication scheme together with the MAC performance. The proposed cross-layer optimization methodology improves the throughput of ILWNs, which is validated through theoretical analysis and multiple simulation results

    Interference in vehicle-to-vehicle communication networks - analysis, modeling, simulation and assessment

    Get PDF
    In wireless vehicular communication networks the periodic transmission of status updates by all vehicles represents a basic service primitive, in particular for safety related applications. Due to the limited communication resources the question raises how much data each node may provide such that the quality of service required by applications can still be guaranteed under realistic interference conditions. Local broadcasts capacity is introduced and analyzed to tackle this open question

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843
    • 

    corecore